Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Làm mẫu câu b)
b) n là số tự nhiên nên n có 1 trong 2 dạng 2k hoặc 2k + 1
TH1: n = 2k
\(\Rightarrow\) \(\left(2k+5\right)\left(2k+8\right)=2\left(k+4\right)\left(2k+5\right)⋮2\)
TH1: n = 2k +1
\(\Rightarrow\left(2k+1+5\right)\left(2k+1+8\right)=2\left(k+3\right)\left(2k+9\right)⋮2\)
a) Do (2n+5) là số lẻ,4n+2023 là số lẻ \(\Rightarrow\)(2n+5).(4n+2023) là số lẻ
\(\Rightarrow\)(2n+5).(4n+2023) không chia hết cho 2
Vậy .................
Lời giải:
$a+a^2+a^3+...+a^{2n}=(a+a^2)+(a^3+a^4)+...+(a^{2n-1}+a^{2n})$
$=a(a+1)+a^3(a+1)+....+a^{2n-1}(a+1)$
$=(a+1)(a+a^3+....+a^{2n-1})\vdots a+1$
\(n^3+3n^2+2n=n\left(n^2+3n+2\right)=n\left(n+1\right)\left(n+2\right)\)
Vì n;n+1;n+2 là ba số liên tiếp
nên \(n\left(n+1\right)\left(n+2\right)⋮3!=6\)
1/abcd chia hết cho 101 thì cd = ab, abcd = abab
Mà:
ab - ab = ab - cd = 0 (chia hết cho 101)
Ngược lại, ab - ab = cd - ab = 0 (chia hết cho 101)
2/n . (n+2) . (n+8)
n có 3 trường hợp:
TH1: n chia hết cho 3
Gọi tích đó là A.
A = n.(n+2).(n+8)
A = 3k.(3k+2).(3k+8)
=> A chia hết cho 3
TH2: n chia 3 dư 1
B = (3k+1).(3k+1+2).(3k+1+8)
B = (3k+1).(3k+3).(3k+9)
Vì 3k chia hết cho 3 và 3 chia hết cho 3 nên 3k+3 chia hết cho 3 => B chia hết cho 3
TH3: n chia 3 dư 2
TH này ko hợp lý, bạn nên xem lại đề
n . (n+4) . (2n+1)
bạn giải tương tự nhé
minh van chua ro phan de 2^2n+1-1 la (2^2n+1) hay nhu de ghi ban a
( 2n + 2 ).( 2n + 4 ) chia hết cho 8
Chứng tỏ rằng vì :
Ta thấy n phải là số chẵn mà 2n + 2 đã là số chẵn
2n + 4 đã là số chẵn vì \(⋮\) cho 2
Nên chứng tỏ:
\(n+\left(2.4\right)⋮8\)
=> n + 8 chia hết cho 8
=> ( 2n + 2 ).( 2n + 4 ) chia hết cho 8
Ta có : ( 2n + 2 ).( 2n + 4 )
\(\Rightarrow\) 4n2 + 4n + 8n + 8
Vì 8n \(⋮\)8 ; 8\(⋮\)8 ; 4n thuộc ước của 8
\(\Rightarrow\)4n2 + 4n + 8n + 8 \(⋮\)8
\(\Rightarrow\)( 2n + 2 )( 2n + 4 ) chia hết cho 8