Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b, Ta có: a.b=ƯCLN(a,b) . BCNN(a,b)=2400
=ƯCLN(a,b) . 120 = 2400
=> ƯCLN(a,b)= 2400 : 120=20
Đặt a=20n ; b=20m ; (n,m)=1
Ta có: a.b=20n . 20m=2400
=> n.m=2400:(20.20)= 6
Lập bảng:
n | 1 | 6 | 2 | 3 |
m | 6 | 1 | 3 | 2 |
a | 20 | 120 | 40 | 60 |
b | 120 | 20 | 60 | 40 |
Đặt a là UCLN(3n+2,2n+1) => 3n+2 chia hết cho a va 2+1 chia hết cho a.
=> 2(3n+2) vẫn chia hết cho a và 3(2n+1) vẫn chia hết cho a
=>2(3n+2)-3(2n+1) chia hết cho a
=>6n+4-6n-3 chia hết cho a
=> 1 chia hết cho a
=> a=1
vậy 3n+2 và 2n+1 là hai số nguyên tố cùng nhau.
vì n và n+1 là 2 số tự nhiên liên tiếp
=) n + n+1 chia hết cho 2 (1)
vì n, n+1 và n+2 là 3 stn liên tiếp
=) n+n+1+n+2 chia hết cho 3 (2)
Từ (1) và (2) =) n+n+1+n+2 chia hết cho 6
hay BCNN của n+n+1+n+2 là 6
vậy ....
1.
Nếu n chẵn thì n + 5 chia hết cho 2 => n.(n+5) chia hết cho 2
Nếu n lẻ thì n + 5 chẵn => n.(n+5) chia hết cho 2
=> đpcm
Câu 4:
Giải:
Ta có:
\(n+1⋮2n-3\)
\(\Rightarrow2\left(n+1\right)⋮2n-3\)
\(\Rightarrow2n+2⋮2n-3\)
\(\Rightarrow\left(2n-3\right)+5⋮2n-3\)
\(\Rightarrow5⋮2n-3\)
\(\Rightarrow2n-3\in\left\{1;5\right\}\)
+) \(2n-3=1\Rightarrow n=2\)
+) \(2n-3=5\Rightarrow n=4\)
Vậy \(n\in\left\{2;4\right\}\)
*Lưu ý: còn trường hợp n = 1 nữa nhưng khi đó tỉ 2n - 3 = -1. Bạn lấy số đó thì thay vào.
1)Ta có:[a,b].(a,b)=a.b
120.(a,b)=2400
(a,b)=20
Đặt a=20k,b=20m(ƯCLN(k,m)=1,\(k,m\in N\))
\(\Rightarrow20k\cdot20m=2400\)
\(400\cdot k\cdot m=2400\)
\(k\cdot m=6\)
Mà ƯCLN(k,m)=1,\(k,m\in N\)
Ta có bảng giá trị sau:
k | 2 | 3 | 1 | 6 |
m | 3 | 2 | 6 | 1 |
a | 40 | 60 | 20 | 120 |
b | 60 | 40 | 120 | 20 |
Mà a,b là SNT\(\Rightarrow\)a,b không tìm được
2)Mình nghĩ đề đúng là cho 2a+3b chia hết cho 15
Ta có:\(2a+3b⋮15\Rightarrow3\left(2a+3b\right)⋮15\Rightarrow6a+9b⋮15\)
Ta có:\(9a+6b+6a+9b=15a+15b=15\left(a+b\right)⋮15\)
Mà \(6a+9b⋮15\Rightarrow9a+6b⋮15\left(đpcm\right)\)
1) Coi a< b
ƯCLN (a;b) = 56 . Đặt a = 56m; b = 56n (m; n nguyên tố cùng nhau và m < n)
a + b = 224 => 56m + 56n = 224 => m + n = 4 => m = 1; n =3 => a = 56 và b = 168
Vậy...
2) Gọi d = ƯCLN(2n + 2; 2n+ 3)
=> 2n + 1 chia hết cho d; 2n +3 chia hết cho d
=> 2n + 3 - (2n + 1) chia hết cho d => 2 chia hết cho d => d = 1 hoặc d = 2
Mà 2n + 1 lẻ nên 2n + 1 không chia hết cho 2 => d = 1
Vậy...
3) Áp dụng công thức ƯCLN(a;b) . BCNN(a;b) = a.b => ƯCLN(a;b) = 2400 : 120 = 20
Đặt a = 20m; b= 20n( m; n nguyên tố cùng nhau; coi m< n)
a.b = 20m.20n = 400mn = 2400 => m.n = 6 = 1.6 = 2.3
+) m = 1; n = 6 => a = 20; b = 120
+) m = 2; n = 3 => a = 40; b = 60
Vây,...
4) a chia hết cho b nên BCNN(a;b) = a = 18
=> b \(\in\)Ư(18) = {1;2;3;6;9;18}
vậy,,,
khó quá không làm được