K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
13 tháng 1

Lời giải:

$A=\frac{2023a+b}{2023a-b}=\frac{(2023a-b)+2b}{2023a-b}$

$=1+\frac{2b}{2023a-b}=1+\frac{2}{2023\frac{a}{b}-1}$

Để $A$ nhỏ nhất thì $\frac{2}{2023.\frac{a}{b}-1}$ nhỏ nhất, tức là $2023\frac{a}{b}-1$ lớn nhất, hay $\frac{a}{b}$ lớn nhất.

Với điều kiện $1\leq a\leq b\leq 9$ và $a,b$ là số tự nhiên thì $\frac{a}{b}$ lớn nhất khi mà $a=b$

Khi đó: $A_{\max}=\frac{2023a+a}{2023a-a}=\frac{2024}{2022}=\frac{1012}{1011}$

25 tháng 9 2023

M k b 

3 tháng 1

a) Ta có: \(\left|x+5\right|\ge0\forall x\)

\(\Rightarrow\left|x+5\right|+2023\ge2023\forall x\)

\(\Rightarrow A\ge2023\forall x\)

Dấu \("="\) xảy ra khi: \(x+5=0\Leftrightarrow x=-5\)

Vậy \(Min_A=2023\) khi \(x=-5\).

b) Ta có: \(\left\{{}\begin{matrix}\left|2x+6\right|\ge0\forall x\\\left|y+3x\right|\ge0\forall x,y\end{matrix}\right.\)

\(\Rightarrow\left|2x+6\right|+\left|y+3x\right|\ge0\forall x,y\)

\(\Rightarrow\left|2x+6\right|+\left|y+3x\right|+25\ge25\forall x,y\)

\(\Rightarrow B\ge25\forall x,y\)

Dấu \("="\) xảy ra khi: \(\left\{{}\begin{matrix}2x+6=0\\y+3x=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=-6\\y=-3x\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=-6:2=-3\\y=-3\cdot\left(-3\right)=9\end{matrix}\right.\)

Vậy \(Min_B=25\) khi \(x=-3;y=9\).

c) Ta có: \(\left\{{}\begin{matrix}\left|12-3x\right|\ge0\forall x\\\left|-y-4x\right|\ge0\forall x,y\end{matrix}\right.\)

\(\Rightarrow\left|12-3x\right|+\left|-y-4x\right|\ge0\forall x,y\)

\(\Rightarrow\left|12-3x\right|+\left|-y-4x\right|-12\ge-12\forall x,y\)

\(\Rightarrow C\ge-12\forall x,y\)

Dấu \("="\) xảy ra khi: \(\left\{{}\begin{matrix}12-3x=0\\-y-4x=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x=12\\y=-4x\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=12:3=4\\y=-4\cdot4=-16\end{matrix}\right.\)

Vậy \(Min_C=-12\) khi \(x=4;y=-16\).

\(\mathit{Toru}\)

4 tháng 7 2023

a, A = 2023 - \(\dfrac{2020}{x}\) ( \(x\in\) N)

   Đk: \(x\) # 0

⇒ \(x\in\) N*

\(x\in\) N* nên \(\dfrac{2020}{x}>0\) vậy Amax  ⇔\(\dfrac{2020}{x}\)  đạt giá trị nhỏ nhất.

\(\dfrac{2020}{x}\) đạt giá trị nhỏ  nhất ⇔ \(x\)max mà \(x\) là số tự nhiên nên không có số tự nhiên lớn nhất

Vậy không có giá trị lớn nhất của A

b, B = 2023 - 1003: (1004 - \(x\)) Với \(x\) là số tự nhiên; đk \(x\) # 1004

       B = 2023 + \(\dfrac{1003}{x-1004}\)

       Nếu \(x\) < 1004 ⇒ \(x\)  - 1004 < 0 ⇒ \(\dfrac{1003}{x-1004}\) < 0 

     ⇒ \(\dfrac{1003}{x-1004}\) + 2023 < 2023 (1)

      Nếu \(x\) > 1004 ⇒ \(x-1004\) > 0 

Vậy B max ⇔ \(\dfrac{1003}{x-1004}\) đạt giá trị lớn nhất 

        \(\dfrac{1003}{x-1004}\) đạt giá trị lớn nhất ⇔ \(x-1004\) đạt giá trị nhỏ nhất.

        Vì \(x\) > 1004 và \(x\) là số tự nhiên nên \(x\) nhỏ nhất khi \(x\) = 1005

       ⇒ Bmax  = 2023 + \(\dfrac{1003}{1005-1004}\)  = 3026 xảy ra khi \(x\) = 1005 (2)

Kết luận:

Kết hợp (1) và (2) ta có Giá trị lớn  nhất của biểu thức B là 3026 xảy ra khi \(x=1005\)

 

 

17 tháng 4 2023

Áp dụng tính chất : Nếu \(\dfrac{a}{b}< 1\) thì \(\dfrac{a}{b}< \dfrac{a+n}{b+n}\) ( a; b; n ϵ N , b; n ≠ 0 )

Ta có \(\dfrac{2023^{31}+5}{2023^{32}+5}< 1\)

⇒ \(B=\dfrac{2023^{31}+5}{2023^{32}+5}< \dfrac{2023^{31}+5+2018}{2023^{32}+5+2018}=\dfrac{2023^{31}+2023}{2023^{32}+2023}=\dfrac{2023\left(2023^{30}+1\right)}{2023\left(2023^{31}+1\right)}=\dfrac{2023^{30}+1}{2023^{31}+1}=A\)Vậy A > B

17 tháng 4 2023

Ta có 2023A = \(\dfrac{2023.\left(2023^{30}+5\right)}{2023^{31}+5}=\dfrac{2023^{31}+5.2023}{2023^{31}+5}\)

\(=1+\dfrac{2022.5}{2023^{31}+5}\)

Lại có 2023B = \(\dfrac{2023.\left(2023^{31}+5\right)}{2023^{32}+5}=\dfrac{2023^{32}+2023.5}{2023^{32}+5}\)

\(=1+\dfrac{2022.5}{2023^{32}+5}\)

Dễ thấy 202331 + 5 < 202332 + 5

\(\Leftrightarrow\dfrac{2022.5}{2023^{31}+5}>\dfrac{2022.5}{2023^{32}+5}\)

\(\Leftrightarrow1+\dfrac{2022.5}{2023^{31}+5}>1+\dfrac{2022.5}{2023^{32}>5}\)

\(\Leftrightarrow2023A>2023B\Leftrightarrow A>B\)

20 tháng 10 2023

A = 2023 - 1003:999 = 2023 - 1 = 2022.
hc tốt

 

20 tháng 10 2023

Vì 1003 < 999, nên phần tử trong dấu chia sẽ nhỏ hơn 1

Vậy giá trị nhỏ nhất của biểu thức A là 

 

A = 2023 - 1003:999 = 2023 - 1 = 2022.

 

GH
6 tháng 8 2023

Bài 1: 

a) 02002 < 02023

 

b) 20220 = 20230

 

c) 549 < 5510

d) ( 4 + 5 )3 > 4+ 52

đ) 92 - 32 > ( 9 - 3 )2

Bài 2:

a) 32 x 43 - 32 + 333

= 9 x 64 - 9 + 333

= 576 - 9 + 333

= 567 + 333

= 900

b) 5 x 43 + 24 x 5 + 410

= 5 x 64 + 24 x 5 + 1

= 5 x ( 64 + 24 ) + 1

= 5 x 88 + 1

= 440 + 1

= 441

c) 23 x 42 + 32 x 5 - 40 x 12023

= 8 x 16 + 9 x 5 - 40 x 1

= 128 + 45 - 40

= 133

6 tháng 8 2023

Bài 1 :

a) \(0^{2002}=0;0^{2023}=0\Rightarrow0^{2002}=0^{2023}\)

b) \(2022^0=1;2023^0=1\Rightarrow2022^0=2023^0\)

c) \(54^9< 55^9;55^9< 55^{10}\Rightarrow54^9< 55^{10}\)

d) \(\left(4+5\right)^3>\left(4+5\right)^2;\left(4+5\right)^2>4^2+5^2\Rightarrow\left(4+5\right)^3>4^2+5^2\)

đ) \(9^2-3^2=81-9=82;\left(9-3\right)^2=6^2=36\Rightarrow9^2-3^2>\left(9-3\right)^2\)

TL

b,=2005

Sai mik sorry nha cả mik làm phần B thôi

Hok tốt

29 tháng 10 2021

cho cách làm nữa chứ

13 tháng 2 2023

\(A=\dfrac{2024^{2023}+1}{2024^{2024}+1}\)

\(2024A=\dfrac{2024^{2024}+2024}{2024^{2024}+1}=\dfrac{\left(2024^{2024}+1\right)+2023}{2024^{2024}+1}=\dfrac{2024^{2024}+1}{2024^{2024}+1}+\dfrac{2023}{2024^{2024}+1}=1+\dfrac{2023}{2024^{2024}+1}\)

\(B=\dfrac{2024^{2022}+1}{2024^{2023}+1}\)

\(2024B=\dfrac{2024^{2023}+2024}{2024^{2023}+1}=\dfrac{\left(2024^{2023}+1\right)+2023}{2024^{2023}+1}=\dfrac{2024^{2023}+1}{2024^{2023}+1}+\dfrac{2023}{2024^{2023}+1}=1+\dfrac{2023}{2024^{2023}+1}\)

Vì \(2024>2023=>2024^{2024}>2024^{2023}\)

\(=>2024^{2024}+1>2024^{2023}+1\)

\(=>\dfrac{2023}{2024^{2023}+1}>\dfrac{2023}{2024^{2024}+1}\)

\(=>A< B\)

 

\(#PaooNqoccc\)

13 tháng 2 2023

dễ