Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Nếu n2+2014 là số chính phương với n nguyên dương thì n2 + 2014 = k2 → k2 – n2 = 2014
=> (k – n)(k + n) = 2014 (*)
Vậy (k + n) – (k – n) = 2n là số chẵn nên k và n phải cùng chẵn hoặc cùng lẻ.
Mặt khác (k – n)(k + n) = 2014 là chẵn
Nên (k – n), (k + n) đều chia hết cho 2 hay (k – n)(k + n) chia hết cho 4
Mà 2014 không chia hết cho 4
Suy ra đẳng thức (*) không thể xảy ra.
Vậy không có số nguyên dương n nào để số n2 + 2014 là số chính phương
b) Với 2 số a, b dương:
Xét: a2 + b2 – ab ≤ 1
<=> (a + b)(a2 + b2 – ab) ≤ (a + b) (vì a + b > 0)
<=> a3 + b3 ≤ a + b
<=> (a3 + b3)(a3 + b3) ≤ (a + b)(a5 + b5) (vì a3 + b3 = a5 + b5)
<=> a6 + 2a3b3 + b6 ≤ a6 + ab5 + a5b + b6
<=> 2a3b3 ≤ ab5 + a5b
<=> ab(a4 – 2a2b2 + b4) ≥ 0
<=> ab(a2 - b2) ≥ 0 đúng ∀ a, b > 0 .
Vậy: a2 + b2 ≤ 1 + ab với a, b dương và a3 + b3 = a5 + b5
\(a^2+b^2\le1+ab\)
\(\Leftrightarrow a^2+b^2-ab-1\le0\)
\(\Leftrightarrow\left(a+b\right)\left(a^2+b^2-ab\right)-\left(a+b\right)\le0\)
\(\Leftrightarrow a^3+b^3\le a+b\)
\(\Leftrightarrow\left(a^3+b^3\right)^2\le\left(a+b\right)\left(a^5+b^5\right)\) (Do \(a^3+b^3=a^5+b^5\) )
\(\Leftrightarrow a^6+2a^3b^3+b^6\le a^6+ab^5+a^5b+b^6\)
\(\Leftrightarrow2a^3b^3\le ab^5+a^5b\)
\(\Leftrightarrow a^5b+ab^5+2a^3b^3\ge0\)
\(\Leftrightarrow ab\left(a^4+b^4+2a^2b^2\right)\ge0\)
\(\Leftrightarrow ab\left(a^2+b^2\right)^2\ge0\) (luôn đúng \(\forall a;b>0\))
Vậy \(a^2+b^2\le1+ab\)
\(\text{Đặt}\)\(x=a+b\ge2\)
\(P=\frac{a^2+b^2+5}{a+b+3}=\frac{a^2+b^2+2.1+3}{a+b+3}=\frac{a^2+b^2+2ab+3}{a+b+3}=\frac{\left(a+b\right)^2+3}{a+b+3}=\frac{x^2+3}{x+3}\)
\(\Rightarrow P-\frac{7}{5}=\frac{x^2+3}{x+3}-\frac{7}{5}=\frac{\left(5x^2+15\right)-\left(7x+21\right)}{x+3}=\frac{\left(x-2\right).\left(5x+3\right)}{x+3}\ge0\)
\(\text{Vậy giá trị nhỏ nhất của}\)\(P=\frac{7}{5}\Rightarrow x=2\)
\(\Rightarrow a+b=2;ab=1\)
\(\Rightarrow a=b=1\)
\(P=a^2+b^2+\frac{5}{a+b+3}\left(a,b>0\right)\)..
\(P=\left(\frac{a^2}{1}+\frac{b^2}{1}+\frac{5^2}{a+b+3}\right)-\frac{20}{a+b+3}\).
Trước hết, ta chứng minh được:
\(\frac{x^2}{m}+\frac{y^2}{n}+\frac{z^2}{p}\ge\frac{\left(x+y+z\right)^2}{m+n+p}\)với \(x,y,z\in R;m,n,p>0\)\(\left(1\right)\)(tự chứng minh).
Dấu bằng xảy ra \(\Leftrightarrow\frac{x}{m}=\frac{y}{n}=\frac{z}{p}\).
Áp dụng bất đẳng thức \(\left(1\right)\)với \(a,b>0\), ta được:
\(\frac{a^2}{1}+\frac{b^2}{1}+\frac{5^2}{a+b+3}\ge\frac{\left(a+b+5\right)^2}{1+1+a+b+3}=\frac{\left(a+b+5\right)^2}{a+b+5}\)\(=a+b+5\).
\(\Leftrightarrow a^2+b^2+\frac{5^2}{a+b+3}-\frac{20}{a+b+3}\ge a+b+5-\frac{20}{a+b+3}\).
\(\Leftrightarrow P\ge a+b+5-\frac{20}{a+b+3}\left(2\right)\).
Dấu bằng xảy ra \(\Leftrightarrow\frac{a}{1}=\frac{b}{1}=\frac{5}{a+b+3}=\frac{a+b+5}{1+1+a+b+3}=1\).
\(\Leftrightarrow a=b=1\).
Vì \(a,b>0\)nên áp dụng bất đẳng thức Cô-si cho 2 số dương, ta được:
\(a+b\ge2\sqrt{ab}\).
\(\Leftrightarrow a+b\ge2.\sqrt{1}=2.1=2\)(vì \(ab=1\)).
\(\Leftrightarrow a+b+3\ge5\).
\(\Rightarrow\frac{1}{a+b+3}\le\frac{1}{5}\).
\(\Rightarrow\frac{-1}{a+b+3}\ge-\frac{1}{5}\).
\(\Leftrightarrow\frac{-20}{a+b+3}\ge\frac{-20}{5}=-4\left(3\right)\).
Dấu bằng xảy ra \(\Leftrightarrow a=b=1\).
Ta lại có: \(a+b\ge2\)(chứng minh trên).
\(\Leftrightarrow a+b+5\ge7\left(4\right)\).
Dấu bằng xảy ra \(\Leftrightarrow a=b=1\).
Từ \(\left(3\right)\)và \(\left(4\right)\), ta được:
\(a+b+5-\frac{20}{a+b+3}\ge7-4=3\left(5\right)\).
Từ \(\left(2\right)\)và \(\left(5\right)\), ta được:
\(P\ge3\).
Dấu bằng xảy ra \(\Leftrightarrow a=b=1\).
Vậy \(minP=3\Leftrightarrow a=b=1\).
\(a^2+b^2\le1+ab\)
\(\Leftrightarrow a^2-ab+b^2\le1\)
\(\Leftrightarrow\left(a+b\right)\left(a^2-ab+b^2\right)\le a+b\)
\(\Leftrightarrow a^3+b^3\le a+b\)
\(\Leftrightarrow\left(a^3+b^3\right)\left(a^3+b^3\right)\le\left(a+b\right)\left(a^5+b^5\right)\) ( \(a^3+b^3=a^5+b^5\))
\(\Leftrightarrow a^6+2a^3b^3+b^6\le a^6+ab^5+a^5b+b^6\)
\(\Leftrightarrow a^5b+ab^5\ge2a^3b^3\)
\(\Leftrightarrow a^5b+ab^5-2a^3b^3\ge0\)
\(\Leftrightarrow ab\left(a^4-2a^2b^2+b^4\right)\ge0\)
\(\Leftrightarrow ab\left(a^2-b^2\right)^2\ge0\) (luôn đúng \(\forall a;b>0\))
Vậy \(a^2+b^2\le1+ab\)