Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(ab+bc+ca\le1\)
\(\Rightarrow\sqrt{a^2+1}\ge\sqrt{a^2+ab+bc+ca}=\sqrt{\left(a+b\right)\left(a+c\right)}\)
\(\Rightarrow\dfrac{a}{\sqrt{a^2+1}}\le\dfrac{a}{\sqrt{\left(a+b\right)\left(a+c\right)}}\le\dfrac{\dfrac{a}{a+b}+\dfrac{a}{a+c}}{2}\)
\(tương\) \(tự\Rightarrow\Sigma\dfrac{a}{\sqrt{a^2+1}}\le\dfrac{\dfrac{a}{a+b}+\dfrac{a}{a+c}}{2}+\dfrac{\dfrac{b}{a+b}+\dfrac{b}{b+c}}{2}+\dfrac{\dfrac{c}{b+c}+\dfrac{c}{a+c}}{2}=\dfrac{3}{2}\left(đpcm\right)\)
\(dấu"="\Leftrightarrow a=b=c=\sqrt{\dfrac{1}{3}}\)
đk: x\(x\ge2,y\ge-1999,z\ge2000\)
pt <-> 2VT=x+y+z
<-> (x-2-\(2\sqrt{x-2}\)+1)+(y+1999-\(2\sqrt{y+1999}\)+1)+(z-2000-\(2\sqrt{z-2000}\)+1)=0
<-> \(\left(\sqrt{x-2}-1\right)^2\)+\(\left(\sqrt{y+1999}-1\right)^2\)+\(\left(\sqrt{z-2000}-1\right)^2\)=0
<-> \(\hept{\begin{cases}\sqrt{x-2}-1=0\\\sqrt{y+1999}-1=0\\\sqrt{z-2000}-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=3\\y=-1998\\z=2001\end{cases}}}\)(tm)
Vi a^2+b^2+c^2=1
=>-1=<a,b,c=<1
=>(1+a)(1+b)(1+c)>=0
=>1+abc+ab+bc+ca+a+b+c>=0 (1*)
Lại có (a+b+c+1)^2/2>=0
=>[a^2+b^2+c^2+1+2a+2b+2c+2ab+2bc+2ca
]/2>=0
=>[2+2a+2b+2c+2ab+2bc+2ca]/2>=0 (Thay a^2+b^2+c^2=1)
=>1+a+b+c+ab+bc+ca>=0 (2*)
tu (1*)(2*) ta co abc+2(1+a+b+c+ab+bc+ca)>=0
dau = xay ra <=>a+b+c=-1 va a^2+b^2+c^2=1
<=>a=0,b=0,c=-1 va cac hoan vi cua no
Vì a^2+b^2+c^2=1
=>-1=<a,b,c=<1
=>(1+a)(1+b)(1+c)>=0
=>1+abc+ab+bc+ca+a+b+c>=0 (1*)
Lại có (a+b+c+1)^2/2>=0
=>[a^2+b^2+c^2+1+2a+2b+2c+2ab+2bc+2ca
]/2>=0
=>[2+2a+2b+2c+2ab+2bc+2ca]/2>=0 (Thay a^2+b^2+c^2=1)
=>1+a+b+c+ab+bc+ca>=0 (2*)
tu (1*)(2*) ta co abc+2(1+a+b+c+ab+bc+ca)>=0
dau = xay ra <=>a+b+c=-1 va a^2+b^2+c^2=1
<=>a=0,b=0,c=-1 và các hoan vi của nó
vi x-y=0 => x=y
thay x=y vao he ta duoc
\(\hept{\begin{cases}\left(a+1\right)x-x=a+1&x+\left(a-1\right)x=2&\end{cases}}\)
<=>\(\hept{\begin{cases}ax=a+1\\2=ax\end{cases}}\)
<=>\(\hept{\begin{cases}2=a+1\\ax=2\end{cases}\Leftrightarrow\hept{\begin{cases}a=1\\x=y=2\end{cases}}}\)
voi a =1 thi he co nghiem duy nhat x=y=2
cai doan dau do may minh bi loi chu no la he gom 2 pt
(a+1)x-x=a+1 va x+(a-1)x=2
Đặt \(\hept{\begin{cases}a=\frac{x}{y}\\b=\frac{y}{z}\\c=\frac{z}{x}\end{cases}}\) Ta có: \(A=\frac{1}{2+a}+\frac{1}{2+b}+\frac{1}{2+c}=\frac{1}{\frac{x}{y}+2}+\frac{1}{\frac{y}{z}+2}+\frac{1}{\frac{z}{x}+2}\)
\(=\frac{y}{x+2y}+\frac{z}{y+2z}+\frac{x}{z+2x}\)
Cần cm \(A\le1\Leftrightarrow2A\le2\)
\(\Leftrightarrow\frac{2y}{x+2y}+\frac{2z}{y+2z}+\frac{2x}{z+2x}\le2\)
\(\Leftrightarrow\left(1-\frac{2y}{x+2y}\right)+\left(1-\frac{2z}{y+2z}\right)+\left(1-\frac{2x}{z+2x}\right)\ge1\)
\(\Leftrightarrow\frac{x}{x+2y}+\frac{y}{y+2z}+\frac{z}{z+2x}\ge1\)
\(\Leftrightarrow\frac{x^2}{x^2+2xy}+\frac{y^2}{y^2+2yz}+\frac{z^2}{z^2+2xz}\ge1\)
bđt này đúng theo cauchy-schwarz. dấu bằng xảy ra khi a=b=c=1
Thanks bạn nha Girl:>>