K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 4 2017

\(\dfrac{ab}{a+b}=\dfrac{bc}{b+c}=\dfrac{ca}{c+a}\)

=> \(\dfrac{abc}{ac+bc}=\dfrac{abc}{ab+ac}=\dfrac{abc}{bc+ab}\)

=> ac + bc = ab + ac = bc + ab (do abc \(\ne0\))

=> ac + bc - ab - ac = 0

=> bc - ab = 0

=> b(c - a) = 0

Mà b \(\ne0\) nên c - a = 0 => c = a

Tương tự ta có: a = b

Từ đó có: a = b = c

Thay vào M được:

\(M=\dfrac{a^2+a^2+a^2}{a^2+a^2+a^2}=1\)

AH
Akai Haruma
Giáo viên
28 tháng 10 2021

Lời giải:

\(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\Rightarrow \frac{abc}{c(a+b)}=\frac{abc}{a(b+c)}=\frac{bca}{b(c+a)}\)

\(\Leftrightarrow c(a+b)=a(b+c)=b(c+a)\)

\(\Leftrightarrow ac+bc=ab+ac=bc+ab\Leftrightarrow ab=bc=ac\)

\(\Rightarrow a=b=c\) (do $a,b,c>0$)

$\Rightarrow M=\frac{a^2+a^2+a^2}{a^2+a^2+a^2}=1$

NV
13 tháng 11 2021

\(\dfrac{ab}{a+b}=\dfrac{bc}{b+c}=\dfrac{ca}{c+a}\Rightarrow\dfrac{a+b}{ab}=\dfrac{b+c}{bc}=\dfrac{c+a}{ca}\)

\(\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{c}+\dfrac{1}{a}\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{a}=\dfrac{1}{c}\\\dfrac{1}{a}=\dfrac{1}{b}\end{matrix}\right.\) \(\Rightarrow a=b=c\)

\(\Rightarrow M=\dfrac{a^2+a^2+a^2}{a^2+a^2+a^2}=1\)

NV
9 tháng 12 2018

Do \(a,b,c\ne0\)

\(\dfrac{ab}{a+b}=\dfrac{bc}{b+c}=\dfrac{ac}{a+c}\Rightarrow\dfrac{a+b}{ab}=\dfrac{b+c}{bc}=\dfrac{a+c}{ac}\)

\(\Rightarrow\dfrac{a}{ab}+\dfrac{b}{ab}=\dfrac{b}{bc}+\dfrac{c}{bc}=\dfrac{a}{ac}+\dfrac{c}{ac}\)

\(\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{a}+\dfrac{1}{c}\) \(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{1}{b}+\dfrac{1}{c}\\\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{a}+\dfrac{1}{c}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{a}=\dfrac{1}{c}\\\dfrac{1}{b}=\dfrac{1}{a}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=c\\b=a\end{matrix}\right.\) \(\Rightarrow a=b=c\)

\(\Rightarrow M=\dfrac{a.a+a.a+a.a}{a^2+a^2+a^2}=\dfrac{3a^2}{3a^2}=1\)

20 tháng 12 2017

Ta có:

\(\dfrac{ab}{a+b}=\dfrac{bc}{b+c}\)

<=> \(ab\cdot\left(b+c\right)=bc\cdot\left(a+b\right)\)

<=> \(b^2\cdot\left(a-c\right)=0\)

<=> \(a=c\)

Làm tương tự ta được \(b=a\) => a=b=c

=> M=1

NV
27 tháng 12 2018

\(\dfrac{ab}{a+b}=\dfrac{bc}{b+c}=\dfrac{ac}{a+c}\Rightarrow\dfrac{a+b}{ab}=\dfrac{b+c}{bc}=\dfrac{a+c}{ac}\)

\(\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{a}+\dfrac{1}{c}\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{1}{b}+\dfrac{1}{c}\\\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{a}+\dfrac{1}{c}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{a}=\dfrac{1}{c}\\\dfrac{1}{b}=\dfrac{1}{a}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=c\\a=b\end{matrix}\right.\) \(\Rightarrow a=b=c\)

Thay vào M ta được:

\(M=\dfrac{ab+bc+ac}{a^2+b^2+c^2}=\dfrac{a.a+a.a+a.a}{a^2+a^2+a^2}=\dfrac{3a^2}{3a^2}=1\)

27 tháng 12 2018

theo đề bài ta có:

\(\Rightarrow\dfrac{abc}{ab+bc}=\dfrac{abc}{ab+ac}=\dfrac{abc}{bc+ab}\)

\(\Rightarrow ac+bc=ab+ac=bc+ab\)

\(\Rightarrow M=\dfrac{ab+bc+ca}{a^2+b^2+c^2}=\dfrac{a^2+b^2+c^2}{a^2+b^2+c^2}=1\)

19 tháng 10 2023

Ta có VP: 

\(\dfrac{2}{\sqrt{\left(1+a^2\right)\left(1+b^2\right)\left(1+c^2\right)}}\)

Thay \(1=ab+bc+ca\)

\(=\dfrac{2}{\sqrt{\left(ab+bc+ca+a^2\right)\left(ab+bc+ca+b^2\right)\left(ab+bc+ca+c^2\right)}}\)

\(=\dfrac{2}{\sqrt{\left[b\left(a+c\right)+a\left(a+c\right)\right]\left[a\left(b+c\right)+b\left(b+c\right)\right]\left[b\left(a+c\right)+c\left(a+c\right)\right]}}\)

\(=\dfrac{2}{\sqrt{\left(a+c\right)\left(a+b\right)\left(a+b\right)\left(b+c\right)\left(b+c\right)\left(a+c\right)}}\)

\(=\dfrac{2}{\sqrt{\left[\left(a+c\right)\left(a+b\right)\left(b+c\right)\right]^2}}\)

\(=\dfrac{2}{\left(a+c\right)\left(a+b\right)\left(b+c\right)}\)

_____________

Ta có VT: 

\(\dfrac{a}{1+a^2}+\dfrac{b}{1+b^2}+\dfrac{c}{1+c^2}\)

Thay \(1=ab+ac+bc\)

\(=\dfrac{a}{ab+ac+bc+a^2}+\dfrac{b}{ab+ac+bc+b^2}+\dfrac{c}{ab+ac+bc+c^2}\)

\(=\dfrac{a}{a\left(a+b\right)+c\left(a+b\right)}+\dfrac{b}{b\left(b+c\right)+a\left(b+c\right)}+\dfrac{c}{c\left(b+c\right)+a\left(b+c\right)}\)

\(=\dfrac{a}{\left(a+c\right)\left(a+b\right)}+\dfrac{b}{\left(a+b\right)\left(b+c\right)}+\dfrac{c}{\left(a+c\right)\left(b+c\right)}\)

\(=\dfrac{a\left(b+c\right)}{\left(a+c\right)\left(b+c\right)\left(a+b\right)}+\dfrac{b\left(a+c\right)}{\left(a+b\right)\left(a+c\right)\left(b+c\right)}+\dfrac{c\left(a+b\right)}{\left(a+b\right)\left(a+c\right)\left(b+c\right)}\)

\(=\dfrac{ab+ac+ab+bc+ac+bc}{\left(a+b\right)\left(a+c\right)\left(b+c\right)}\)

\(=\dfrac{2ab+2ac+2bc}{\left(a+b\right)\left(a+c\right)\left(b+c\right)}\)

\(=\dfrac{2\cdot\left(ab+ac+bc\right)}{\left(a+b\right)\left(a+c\right)\left(b+c\right)}\)

\(=\dfrac{2}{\left(a+b\right)\left(a+c\right)\left(b+c\right)}\left(ab+ac+bc=1\right)\)

Mà: \(VP=VT=\dfrac{2}{\left(a+b\right)\left(a+c\right)\left(b+c\right)}\)

\(\Rightarrow\dfrac{a}{1+a^2}+\dfrac{b}{1+b^2}+\dfrac{c}{1+c^2}=\dfrac{2}{\sqrt{\left(1+a^2\right)\left(1+b^2\right)\left(1+c^2\right)}}\left(dpcm\right)\)

1 tháng 1 2018

Ta có \(\dfrac{ab}{a+b}\)=\(\dfrac{bc}{b+c}\)=\(\dfrac{ca}{c+a}\)

\(=>\)\(\dfrac{a+b}{ab}\)=\(\dfrac{b+c}{bc}\)=\(\dfrac{c+a}{ca}\)

\(=>\)\(\dfrac{1}{a}\)+\(\dfrac{1}{b}\)=\(\dfrac{1}{b}\)+\(\dfrac{1}{c}\)=\(\dfrac{1}{c}\)+\(\dfrac{1}{a}\)

\(=>\)\(\dfrac{1}{b}\)+\(\dfrac{1}{a}\)=\(\dfrac{1}{c}\)+\(\dfrac{1}{b}\)

\(\dfrac{1}{c}\)+\(\dfrac{1}{b}\)=\(\dfrac{1}{a}\)+\(\dfrac{1}{c}\)

\(\dfrac{1}{a}\)+\(\dfrac{1}{c}\)=\(\dfrac{1}{b}\)+\(\dfrac{1}{a}\)

\(=>\)\(\dfrac{1}{a}=\dfrac{1}{b}=\dfrac{1}{c}\)

\(=>\)a=b=c

Vậy: M=\(\dfrac{ab+bc+ca}{a^2+b^2+c^2}=\dfrac{a^2+a^2+a^2}{a^2+a^2+a^2}\)

= 1

27 tháng 12 2017

mình bt nè