Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\frac{a^2}{\left(a-b\right)\left(a-c\right)}+\frac{b^2}{\left(b-c\right)\left(b-a\right)}+\frac{c^2}{\left(c-b\right)\left(c-a\right)}\)
\(=\frac{-a^2}{\left(a-b\right)\left(c-a\right)}+\frac{-b^2}{\left(b-c\right)\left(a-b\right)}+\frac{-c^2}{\left(b-c\right)\left(c-a\right)}\)
\(=\frac{\left(-a^2\right)\left(b-c\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}+\frac{\left(-b^2\right)\left(c-a\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}+\frac{\left(-c^2\right)\left(a-b\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)
\(=\frac{-a^2b+ca^2-b^2c+ab^2-c^2a+bc^2}{-a^2b-c^2a+ca^2-b^2c+ab^2+bc^2}=1\)
Vậy \(P=1.\)
Ta có:\(\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}=0\)
\(\Rightarrow\frac{a}{b-c}=\frac{b}{a-c}+\frac{c}{b-a}=\frac{b^2-ab+ac-c^2}{\left(c-a\right)\left(a-b\right)}\)
\(\frac{\Leftrightarrow a}{\left(b-c\right)^2}=\frac{b^2-ab+ac-c^2}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\left(1\right)\) Nhân hai vế với \(\frac{1}{b-c}\)
Tương tự ta có:\(\frac{b}{\left(c-a\right)^2}=\frac{c^2-bc+ba-a^2}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\left(2\right);\frac{c}{\left(a-b\right)^2}=\frac{a^2-ac+bc-b^2}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\left(3\right)\)
Cộng (1),(2),(3) ta được đpcm
a) A = \(\frac{a}{\left(a-b\right)\left(a-c\right)}+\frac{b}{\left(b-a\right)\left(b-c\right)}+\frac{c}{\left(c-a\right)\left(c-b\right)}\)
=> A = \(\frac{a}{\left(a-b\right)\left(a-c\right)}-\frac{b}{\left(a-b\right)\left(b-c\right)}+\frac{c}{\left(a-c\right)\left(b-c\right)}\)
=> A = \(\frac{a\left(b-c\right)}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}-\frac{b\left(a-c\right)}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}+\frac{c\left(a-b\right)}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}\)
=> A + \(\frac{ab-ac-ab+bc+ac-bc}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}=0\)
\(B=\frac{a^2}{\left(a-b\right)\left(a-c\right)}+\frac{b^2}{\left(b-a\right)\left(b-c\right)}+\frac{c^2}{\left(c-a\right)\left(c-b\right)}\)
\(=\frac{a^2\left(b-c\right)}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}+\frac{b^2\left(c-a\right)}{\left(b-a\right)\left(b-c\right)\left(c-a\right)}\)
\(+\frac{c^2\left(a-b\right)}{\left(c-a\right)\left(c-b\right)\left(a-b\right)}\)
\(=\frac{a^2\left(b-c\right)}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}+\frac{b^2\left(c-a\right)}{\left(a-b\right)\left(b-c\right)\left(a-c\right)}\)
\(+\frac{c^2\left(a-b\right)}{\left(a-c\right)\left(b-c\right)\left(a-b\right)}\)
\(=\frac{a^2\left(b-c\right)+b^2\left(c-a\right)+c^2\left(a-b\right)}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}\)
\(=\frac{\left(a-b\right)\left(a-c\right)\left(b-c\right)}{\left(a-b\right)\left(a-c\right)\left(b-c\right)}=1\)
Ta có:
\(\frac{b-c}{\left(a-b\right)\left(a-c\right)}=\frac{b-a+a-c}{\left(a-b\right)\left(a-c\right)}=\frac{b-a}{\left(a-b\right)\left(a-c\right)}+\frac{a-c}{\left(a-b\right)\left(a-c\right)}=\frac{1}{c-a}+\frac{1}{a-b}\)
Tương tự:
\(\frac{c-a}{\left(b-c\right)\left(b-a\right)}=\frac{c-b+b-a}{\left(b-c\right)\left(b-a\right)}=\frac{c-b}{\left(b-c\right)\left(b-a\right)}+\frac{b-a}{\left(b-c\right)\left(b-a\right)}=\frac{1}{a-b}+\frac{1}{b-c}\)
Và: \(\frac{a-b}{\left(c-a\right)\left(c-b\right)}=\frac{a-c+c-b}{\left(c-a\right)\left(c-b\right)}=\frac{a-c}{\left(c-a\right)\left(c-b\right)}+\frac{c-b}{\left(c-a\right)\left(c-b\right)}=\frac{1}{b-c}+\frac{1}{c-a}\)
=> \(\frac{b-c}{\left(a-b\right)\left(a-c\right)}+\frac{c-a}{\left(b-c\right)\left(b-a\right)}+\frac{a-b}{\left(c-a\right)\left(c-b\right)}=\frac{1}{c-a}+\frac{1}{a-b}+\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{b-c}+\frac{1}{c-a}\)
=> \(\frac{b-c}{\left(a-b\right)\left(a-c\right)}+\frac{c-a}{\left(b-c\right)\left(b-a\right)}+\frac{a-b}{\left(c-a\right)\left(c-b\right)}=\frac{2}{a-b}+\frac{2}{b-c}+\frac{2}{c-a}\)
=> đpcm
Ta có
\(\frac{b-c}{\left(a-b\right)\left(a-c\right)}=\frac{b-a}{\left(a-b\right)\left(a-c\right)}+\frac{a-c}{\left(a-b\right)\left(a-c\right)}=\frac{1}{a-b}+\frac{1}{c-a}\left(1\right)\)
Tương tự ta có
\(\frac{c-a}{\left(b-c\right)\left(b-a\right)}=\frac{1}{b-c}+\frac{1}{a-b}\left(2\right)\)
\(\frac{a-b}{\left(c-b\right)\left(c-a\right)}=\frac{1}{b-c}+\frac{1}{c-a}\left(3\right)\)
Từ (1) (2) và (3) ta có
\(\frac{b-c}{\left(a-b\right)\left(a-c\right)}+\frac{c-a}{\left(b-c\right)\left(b-a\right)}+\frac{a-b}{\left(c-b\right)\left(c-a\right)}\)
\(=\frac{1}{a-b}+\frac{1}{c-a}+\frac{1}{b-c}+\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a}\)
\(=\frac{2}{a-b}+\frac{2}{b-c}+\frac{2}{c-a}\left(đpcm\right)\)
\(\frac{b-c}{\left(a-b\right)\left(a-c\right)}=\frac{c-b}{\left(a-b\right)\left(c-a\right)}=\frac{\left(c-a\right)+\left(a-b\right)}{\left(a-b\right)\left(c-a\right)}=\frac{1}{a-b}+\frac{1}{c-a}\)
Làm tương tự ta được:\(\frac{c-a}{\left(b-c\right)\left(b-a\right)}=\frac{1}{b-c}+\frac{1}{a-b}\)
\(\frac{a-b}{\left(c-a\right)\left(c-b\right)}=\frac{1}{c-a}+\frac{1}{b-c}\)
\(\Rightarrow\frac{b-c}{\left(a-b\right)\left(a-c\right)}+\frac{c-a}{\left(b-c\right)\left(b-a\right)}+\frac{a-b}{\left(c-a\right)\left(c-b\right)}=\frac{1}{a-b}+\frac{1}{c-a}+\frac{1}{b-c}+\frac{1}{a-b}+\frac{1}{c-a}+\frac{1}{b-c}\)
\(=\frac{2}{a-b}+\frac{2}{b-c}+\frac{2}{c-a}\)
\(\Rightarrow\frac{b-c}{\left(a-b\right)\left(a-c\right)}+\frac{c-a}{\left(b-c\right)\left(b-a\right)}+\frac{a-b}{\left(c-a\right)\left(c-b\right)}=\frac{2}{a-b}+\frac{2}{b-c}+\frac{2}{c-a}\left(ĐPCM\right)\)
MTC: \(abc\left(a-b\right)\left(b-c\right)\left(a-c\right)\)nên
\(A=\frac{bc\left(b-c\right)\left(a-2\right)\left(a-1014\right)}{abc\left(a-b\right)\left(a-c\right)\left(b-c\right)}+\frac{ac\left(a-c\right)\left(b-2\right)\left(b-1004\right)}{abc\left(a-b\right)\left(b-c\right)\left(a-c\right)}+\frac{ab\left(a-b\right)\left(c-2\right)\left(c-1004\right)}{abc\left(a-c\right)\left(a-b\right)\left(b-c\right)}\)
\(=\frac{2008b^2c+2008a^2c+2008a^2b-2008bc^2-2008a^2c-2008ab^2}{abc\left(a-b\right)\left(b-c\right)\left(a-c\right)}\)
\(=\frac{2008\left[\left(c^2a-c^2b\right)+\left(a^2b-a^2c\right)+\left(b^2a-b^2c\right)\right]}{abc\left(a-b\right)\left(b-c\right)\left(a-c\right)}\)
\(=\frac{2008\left(a-b\right)\left(b-c\right)\left(a-c\right)}{abc\left(a-b\right)\left(b-c\right)\left(a-c\right)}\)
\(=\frac{2008}{abc}\) ( với \(abc\ne0\))
\(\frac{a-b}{\left(c-a\right)\left(c-b\right)}=\frac{\left(c-b\right)-\left(c-a\right)}{\left(c-a\right)\left(c-b\right)}=\frac{1}{c-a}-\frac{1}{c-b}=\frac{1}{c-a}+\frac{1}{b-c}\)
Tương tự:
\(\frac{b-c}{\left(a-b\right)\left(a-c\right)}=\frac{1}{a-b}+\frac{1}{c-a};\frac{c-a}{\left(b-c\right)\left(a-b\right)}=\frac{1}{b-c}+\frac{1}{a-b}\)
Cộng lại có đpcm