K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 6 2017

Ta có:

(a + b + c)2 = 0 => a2 + b2 + c2 + 2(ab + bc + ca) = 0

=> a2 + b2 + c2 = -2(ab + bc + ca)

=> (a2 + b2 + c2)2 = 4(ab + bc + ca)2

=> a4 + b4 + c4 + 2(a2b2 + b2c2 + c2a2) = 4[a2b2 + b2c2 + c2a2 + 2(ab2c + bc2a + ca2b)

=> a4 + b4 + c4 = 2(a2b2 + b2c2 + c2a2) + 8abc(a + b + c)

=> a4 + b4 + c4 = 2(a2b2 + b2c2 + c2a2) (vì a + b + c = 0) (1)

Có: \(\left\{{}\begin{matrix}2\left(a^2b^2+b^2c^2+c^2a^2\right)=2\left(a^2b^2+b^2c^2+c^2a^2+2ab^2c+2a^2bc+2abc^2\right)\\2\left(a^4+b^4+c^4\right)=a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}2\left(a^2b^2+b^2c^2+c^2a^2\right)=2\left(ab+bc+ca\right)^2\left(2\right)\\a^4+b^4+c^4=\dfrac{\left(a^2+b^2+c^2\right)}{2}\left(3\right)\end{matrix}\right.\)

Từ (1); (2) và (3) ta có đpcm

3 tháng 4 2018

B1:

\(ab+bc+ca\le a^2+b^2+c^2< 2\left(ab+bc+ca\right)\)

Xét hiệu:

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca\)

\(=\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(a^2-2ac+c^2\right)\)

\(=\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2\ge0\)

=> BĐT luôn đúng

*

Ta có:

\(a< b+c\Rightarrow a^2< ab+ac\)

\(b< a+c\Rightarrow b^2< ab+ac\)

\(c< a+b\Rightarrow a^2< ac+bc\)

Cộng từng vế bất đẳng thức ta được:

\(a^2+b^2+c^2< 2\left(ab+bc+ca\right)\)

Vậy: \(ab+bc+ca\le a^2+b^2+c^2< 2\left(ab+bc+ca\right)\)

3 tháng 4 2018

B2:

Ta có: \(a+b>c\) ; \(b+c>a\); \(a+c>b\)

Xét:\(\dfrac{1}{a+c}+\dfrac{1}{b+c}>\dfrac{1}{a+b+c}+\dfrac{1}{b+c+a}=\dfrac{2}{a+b+c}>\dfrac{2}{a+b+a+b}=\dfrac{1}{a+b}\)

\(\dfrac{1}{a+b}+\dfrac{1}{a+c}>\dfrac{1}{a+b+c}+\dfrac{1}{a+c+b}=\dfrac{2}{a+b+c}>\dfrac{2}{b+c+b+c}=\dfrac{1}{b+c}\)

\(\dfrac{1}{a+b}+\dfrac{1}{b+c}>\dfrac{1}{a+b+c}+\dfrac{1}{b+c+a}=\dfrac{2}{a+b+c}>\dfrac{2}{a+c+a+c}=\dfrac{1}{a+c}\)

Suy ra:

\(\dfrac{1}{a+c}+\dfrac{1}{b+c}>\dfrac{1}{a+b}\)

\(\dfrac{1}{a+b}+\dfrac{1}{a+c}>\dfrac{1}{b+c}\)

\(\dfrac{1}{a+b}+\dfrac{1}{b+c}>\dfrac{1}{a+c}\)

=> ĐPCM

7 tháng 8 2017

1a) a2 + b2 + c2 + 2ab + 2bc + 2ca + a2 + b2 + c2

= ( a2 + 2ab +b) + ( a2 + 2ac + c2 ) + ( b2 + 2bc + c2 )

= ( a + b )2 + ( a + c )+ ( b + c )2

1b) 2.( ac - ab - bc + b2 ) + 2.( bc - ba - ac + a2 ) + 2.( ba - bc - ca + c)

= 2ac - 2ab - 2bc + 2b2 + 2bc - 2ab - 2ac +2a2 + 2ab - 2bc - 2ac + 2c2

= 2a2 + 2b+ 2c2 - 2ab - 2ac - 2bc

= ( a2 - 2ab + b2 ) + (a2 - 2ac + c2 ) + (b2 - 2bc + c2 )

= (a-b)2 + (a-c)+ (b-c)2

15 tháng 10 2021

1.

\(2a^2b^2+2b^2c^2+2c^2a^2-a^4-b^4-c^4>0\\ \Leftrightarrow a^4+b^4+c^4-2a^2b^2-2b^2c^2-2c^2a^2< 0\\ \Leftrightarrow\left(a^4+b^4+c^4+2a^2b^2-2b^2c^2-2c^2a^2\right)-4a^2b^2< 0\\ \Leftrightarrow\left(a^2+b^2-c^2\right)^2-4a^2b^2< 0\\ \Leftrightarrow\left(a^2+b^2-c^2-2ab\right)\left(a^2+b^2-c^2+2ab\right)< 0\\ \Leftrightarrow\left[\left(a-b\right)^2-c^2\right]\left[\left(a+b\right)^2-c^2\right]< 0\\ \Leftrightarrow\left(a-b+c\right)\left(a-b-c\right)\left(a+b-c\right)\left(a+b+c\right)< 0\left(1\right)\)

Vì a,b,c là độ dài 3 cạnh của 1 tg nên \(\left\{{}\begin{matrix}a+c>b\\a-b< c\\a+b>c\\a+b+c>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a-b+c>0\\a-b-c< 0\\a+b-c>0\\a+b+c>0\end{matrix}\right.\)

Do đó \(\left(1\right)\) luôn đúng (do 3 dương nhân 1 âm ra âm)

Từ đó ta được đpcm

 

 

 

15 tháng 10 2021

uầy e đọc chả hỉu j lun :(

14 tháng 3 2018

\(\left(ab+bc+ac\right)^2=a^2b^2+b^2c^2+c^2a^2\\ \Leftrightarrow a^2b^2+b^2c^2+a^2c^2+2\left(ab^2c+abc^2+a^2bc\right)=a^2b^2+b^2c^2+c^2a^2\\ \Leftrightarrow2\left(ab^2c+abc^2+a^2bc\right)=0\\ \Leftrightarrow abc\left(a+b+c\right)=0\left(đpcm;a+b+c=0\right)\)

NV
19 tháng 6 2019

\(8VT=4\left(a^2b+b^2c+c^2a+abc\right)\left(2ab^2+2bc^2+2ca^2+2abc\right)\le\left(a^2b+b^2c+c^2a+2ab^2+2bc^2+2ca^2+3abc\right)^2\)

\(\Rightarrow VT\le\frac{1}{32}\left(2a^2b+2b^2c+2c^2a+4ca^2+4ab^2+4bc^2+6abc\right)^2\)

\(\Rightarrow VT\le\frac{1}{32}\left(2a^2b+2b^2c+2c^2a+4ca^2+4ab^2+4bc^2+9abc\right)^2\)

\(\Rightarrow VT\le\frac{1}{32}\left[\left(a+2b\right)\left(b+2c\right)\left(c+2a\right)\right]^2\)

\(\Rightarrow VT\le\frac{1}{512}\left[\left(a+2b\right)\left(4b+8c\right)\left(c+2a\right)\right]^2\)

\(\Rightarrow VT\le\frac{1}{512}\left(\frac{a+2b+4b+8c+c+2a}{3}\right)^6=\frac{1}{512}\left(a+2b+3c\right)^6=\frac{4^6}{512}=8\)

Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(2;1;0\right)\)

20 tháng 6 2019

Sao có dòng 2 vậy?

AH
Akai Haruma
Giáo viên
30 tháng 5 2020

Lời giải:

Áp dụng BĐT Bunhiacopkxy:

\((2a^2+b^2)(2a^2+c^2)=(a^2+a^2+b^2)(a^2+c^2+a^2)\geq (a^2+ac+ab)^2\)

\(=[a(a+b+c)]^2\)

\(\Rightarrow \frac{a^3}{(2a^2+b^2)(2a^2+c^2)}\leq \frac{a^3}{[a(a+b+c)]^2}=\frac{a}{(a+b+c)^2}\)

Hoàn toàn tương tự với các phân thức còn lại và cộng theo vế thu được:

\(\sum \frac{a^3}{(2a^2+b^2)(2a^2+c^2)}\leq \frac{a+b+c}{(a+b+c)^2}=\frac{1}{a+b+c}\) (đpcm)

Dấu "=" xảy ra khi $a=b=c$

9 tháng 11 2023

 

1/\(=4a^2+4b^2+c^2+8ab-4bc-4ca+4b^2+4c^2+a^2+8bc-4ca-4ab+4a^2+4c^2+b^2+8ca-4bc-4ab=\)

\(=9a^2+9b^2+9c^2=9\left(a^2+b^2+c^2\right)\)

2/

Ta có

\(\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ca\right)\ge0\)

\(\Leftrightarrow a^2+b^2+c^2\ge-2\left(ab+bc+ca\right)=2\)

\(\Rightarrow P=9\left(a^2+b^2+c^2\right)\ge18\)

\(\Rightarrow P_{min}=18\)

8 tháng 7 2019

Ta có: 

a) 

\(a^4+b^4+c^4=\left(a^2+b^2+c^2\right)^2-2a^2b^2-2a^2c^2-2b^2c^2\)

\(=\left[\left(a+b+c\right)^2-2ab-2ac-2bc\right]^2-2a^2b^2-2b^2c^2-2a^2c^2\)

\(=4\left[ab+ac+bc\right]^2-2a^2b^2-2b^2c^2-2a^2c^2\)

\(=4\left(ab\right)^2+4\left(ac\right)^2+4\left(bc\right)^2-8abc\left(a+b+c\right)-2a^2b^2-2b^2c^2-2a^2c^2\)

\(=2\left(a^2b^2+b^2c^2+c^2a^2\right)\)

b)\(=2\left(ab+bc+ac\right)^2-4\left(abbc+abca+bcca\right)\)

\(=2\left(ab+bc+ac\right)^2-4abc\left(a+b+c\right)=2\left(ab+bc+ac\right)^2\)

c) \(\frac{\left(a^2+b^2+c^2\right)^2}{2}=\frac{a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)}{2}=\frac{a^4+b^4+c^4+a^4+b^4+c^4}{2}\)

\(=a^4+b^4+c^4\)