K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
OT
3
Các câu hỏi dưới đây có thể giống với câu hỏi trên
10 tháng 11 2018
\(a.ababab=ab.10101⋮3\)
\(b.36a⋮9;27b⋮9\Rightarrow36a+27b⋮9\)
\(a.42k+14\)
\(42k⋮7;14⋮7\Rightarrow42k+14⋮7\)
\(\Rightarrow\text{Số chia 42 dư 14 thì chia hết cho 7}\)
CN
1
NN
Nguyễn Ngọc Anh Minh
CTVHS
VIP
25 tháng 12 2021
+ Với \(n=1\Rightarrow A=17+1=18⋮9.\)
+ Giả sử với \(n=k\Rightarrow A=17k+111...1⋮9\) (k chữ số 1)
+ Với \(n=k+1\Rightarrow A=17\left(k+1\right)+111...1\) (k+1 chữ số 1)
\(\Rightarrow A=17k+17+10.111...1+1\) (k chữ số 1)
\(\Rightarrow A=\left(17k+111...1\right)+9.111...1+18\)
Ta thấy
\(17k+111...1⋮9\) (k chữ số 1)
\(9.111...1+18⋮9\)
\(\Rightarrow A⋮9\)
Theo nguyên lý phương pháp quy nạp \(\Rightarrow A⋮9\forall n\)
A= 8n + 111.......11111
=(8 + 111.....11111).n
=9999......9.n chia hết cho 9 (dấu hiệu nhận biết)
A= 8n + 111.......11111
=(8 + 111.....11111).n
=9999......9.n chia hết cho 9 (dấu hiệu nhận biết)