Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vì 5^2;5^3;5^4;...;5^100 chia hết cho 5^2
mà 5 ko chia hết cho 5^2
=> A ko chia hết cho 5^2 mà 5^2 là SCP
=> A ko phải là số chính phương
A là số chính phương:
A=5+52+53+...+5100
=5(1+5)+53(1+5)+55(1+5)+...+599(1+6)
=5.6+53.6+55.6+...+599.6
=6.(5+53+55+57+...+599)
Vì 6 là số chính phương nên A là số chính phương
A =5 + 52 + 53 + ... + 5100
A ⋮ 1; 5 ; A (A > 5)
Vậy A là hợp số
b; A = 5 + 52 + 53 + ... + 5100
A = 5 + 52(1 + 5 + 52 + ... + 598)
⇒ A \(⋮\) 5; A không chia hết cho 52. Vậy A không phải là số chính phương vì số chính phương chia hết cho một số nguyên tố thì phải chia hết cho bình phương số nguyên tố đó.
a. Ta có: A = 5 + 5^2 + 5^3 +....+ 5^100
⇒A = 5 + 5^2 + 5^3 + 5^4 + ... + 5^99 + 5^100 ⇒A = 5^1 + 5 + 5^3 . 1 + 5 + ... + 5 ^9 . 1 + 5
⇒A = 5.6 + 5 3 .6 + ... + 5^99 .6
A = 6. 5 + 5 3 + ... + 5^99 chia hết cho 6. Vì A chia hết cho 6 nên A là hợp số
b,A không hải số chính phương
A =5 + 52 + 53 + ... + 5100
A ⋮ 1; 5 ; A (A > 5)
Vậy A là hợp số
b; A = 5 + 52 + 53 + ... + 5100
A = 5 + 52(1 + 5 + 52 + ... + 598)
⇒ A \(⋮\) 5; A không chia hết cho 52. Vậy A không phải là số chính phương vì số chính phương chia hết cho một số nguyên tố thì phải chia hết cho bình phương số nguyên tố đó.
A =5 + 52 + 53 + ... + 5100
A ⋮ 1; 5 ; A (A > 5)
Vậy A là hợp số
b; A = 5 + 52 + 53 + ... + 5100
A = 5 + 52(1 + 5 + 52 + ... + 5198)
⇒ A \(⋮\) 5; A không chia hết cho 52. Vậy A không phải là số chính phương vì số chính phương chia hết cho một số nguyên tố thì phải chia hết cho bình phương số nguyên tố đó.
ta chứng minh \(A=n^2\)
thật vậy
với n=1 , thì \(A=1=1^2\) đúng
ta giả sử đẳng thức đúng tới k ,tức là :
\(1+3+5+..+2k-1=k^2\)
Xét \(1+3+5+..+2k-1+2k+1=k^2+2k+1=\left(k+1\right)^2\)
vậy đẳng thức đúng với k+1
theo nguyên lí quy nạp ta có điều phải chứng minh hay A là số chính phương
a. ta có A chia hết cho 5 và A >5 thế nên A là hợp số
b. dễ thấy A không chia hết cho 5 vì :
\(A=5+25\left(1+5+5^2+..+5^{98}\right)\)
A chia hết cho 5 mà không chia hết cho 25, nên A không là số chính phương
a. Ta có: A = 5 + 52 + 53 +....+ 5100
\(\Rightarrow A=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{99}+5^{100}\right)\)
\(\Rightarrow A=5\left(1+5\right)+5^3.\left(1+5\right)+...+5^{99}.\left(1+5\right)\)
\(\Rightarrow A=5.6+5^3.6+...+5^{99}.6\)
\(A=6.\left(5+5^3+...+5^{99}\right)\) chia hết cho 6.
Vì A chia hết cho 6 nên A là hợp số.
Không Vì A chia hết cho 5 hiển nhiên
nhưng A chia cho 25 dư 5=> không thể là số Cp
Số chia hết cho 5 nhưng không chia hết cho 25 ( 5^2) thì không phải là số chính phương . Vậy A là số chính phương khi A chia hết cho 5^2 tức là các số hạng của A đều chia hết cho 5^2 . Bạn phải hiểu nhé !
Ta có : 5^2 chia hết cho 5^2 , 5^3 chia hết cho 5^2 ,...5^101 chia hết cho 5^2
mà 5 không chia hết cho 5^2 nên A không phải là số chính phương
Vậy A không phải là số chính phương