Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) M = \(5+5^2+5^3+...+5^{80}\)
\(\Leftrightarrow M=5.\left(1+5\right)+5^3\left(1+5\right)+...+5^{79}\left(1+5\right)\)
\(\Leftrightarrow M=5.6+5^3.6+...+5^{79}.6\)
\(\Leftrightarrow M=6.\left(5+5^3+...+5^{79}\right)⋮6\)
=> M chi hết cho 6 => điều phải chứng minh
) M = (5+5^2) + (5^3+5^4) + … + (5^79+5^80)
M = 5(1+5) + 5^3(1+5) + … + 5^79(1+5)
M= 5.6 + 5^3.6 + … + 5^79.6
M = 6(5+5^3+…+5^79) chia hết cho 6
b) Ta thấy : M = 5 + 52+ 53+ ... + 580 cchia hết cho số nguyên tố 5
Mặt khác, do: 52 + 53 + ... 580 chia hết cho 52 (vì tất cả các số hạng đều chia hết cho 52)
=> M = 5 + 52 + 53 + ... + 580 không chia hết cho 52 (do 5 không chia hết cho 52)
=> M chia hết cho 5 nhưng không chia hết cho 52
=> M không phải số chính phương
A=3+32+....+330
A=(3+32+33)+(34+35+36)+...+(328+329+330)
A=3(1+3+9)+34(1+3+9)+.....+328(1+3+9)
A=3.13+34.13+......+328.13
A=13(3+34+.....+328)
=> A chia hết cho 13
Mình chỉ biết làm như thế thôi à bạn (nhưng nếu bạn thay số 52 thành 40 thì mình làm đc)
Mình không biết làm câu b nha...
KB với mình chứ?
\(A=5+5^2+5^3+...+5^{2021}\)
\(=5\left(1+5\right)+5^2\left(1+5\right)+...+5^{2020}\left(1+5\right)\)
\(=5.6+5^2.6+...+5^{2020}.6\)
\(=6\left(5+5^2+...+5^{2020}\right)\)
Vì \(6\left(5+5^2+...+5^{2020}\right)\) ⋮6
⇒A không là số chính phương
Không Vì A chia hết cho 5 hiển nhiên
nhưng A chia cho 25 dư 5=> không thể là số Cp
Số chia hết cho 5 nhưng không chia hết cho 25 ( 5^2) thì không phải là số chính phương . Vậy A là số chính phương khi A chia hết cho 5^2 tức là các số hạng của A đều chia hết cho 5^2 . Bạn phải hiểu nhé !
Ta có : 5^2 chia hết cho 5^2 , 5^3 chia hết cho 5^2 ,...5^101 chia hết cho 5^2
mà 5 không chia hết cho 5^2 nên A không phải là số chính phương
Vậy A không phải là số chính phương
a) 1 5 + 2 3 = 9 = 3 2 là số chính phương.
b) 2 5 + 5 2 = 57 không là số chính phương.
c) 3 3 . 4 = 108 không là số chính phương.
d) 5 2 + 12 2 = 169 = 13 2 là số chính phương
a) 3 3 . 4 = 108 không là số chính phương.
b) 5 2 + 12 2 = 169 = 13 2 là số chính phương.
vì 5^2;5^3;5^4;...;5^100 chia hết cho 5^2
mà 5 ko chia hết cho 5^2
=> A ko chia hết cho 5^2 mà 5^2 là SCP
=> A ko phải là số chính phương
A là số chính phương:
A=5+52+53+...+5100
=5(1+5)+53(1+5)+55(1+5)+...+599(1+6)
=5.6+53.6+55.6+...+599.6
=6.(5+53+55+57+...+599)
Vì 6 là số chính phương nên A là số chính phương