Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
max dễ :
10 chia 3 dư 1 , suy ra 10^n chia 3 dư 1^n
suy ra 10^n chia 3 dư 1
ta có : 4 chia 3 dư 1
suy ra 10^n-4 chia 3 dư 1-1
10^n-4 chia 3 dư 0
10^n-4 chia het cho 3
cho A=1+4+4^2+4^3+...+4^11
a,chung to rang A chia het cho 21
b,A chia het cho 105
c,A chia het cho 4097
a)A=1+4+4^2+4^3+...+4^11
=(1+4+42)+(43+44+45)+(46+47+48)+(49+410+411)
=(1+4+42)+(43.1+43.4+43.42)+(46.1+46.4+46.42)+(49.1+49.4+49.42)
=(1+4+42).1+43.(1+4+42)+46.(1+4+42)+49.(1+4+42)
=21.1+43.21+46.21+49.21
=21.(1+43+46+49)
=> A chia het cho 21
b)A=1+4+4^2+4^3+...+4^11
=(1+4+42+43+44+45)+(46+47+48+49+410+411)
=(1+4+42+43+44+45)+(46.1+46.4+46.42+46.43+46.44+46.45)
=(1+4+42+43+44+45).1+46.(1+4+42+43+44+45)
=1365.1+46.1365
=1365.1+46.1365
=1365.(1+46)
vì nên 1365 chia hết cho 105 nên A chia het cho 105
Cho biểu thức: A = 4 + 41 + 42 + .... + 489. Số dư khi chia A cho 85 là:
bạn ghi cách làm luôn nha ^^
*ĐỂ CHỨNG MINH chia hết ta dùng phương pháp tình CHỮ SỐ TẬN CÙNG
Ta thấy chữ số tận cùng của \(43^{43}\)chính là chữ số tận cùng của \(3^{43}\)
Ta có \(3^{43}=3^{40}.3^3=\left(3^4\right)^{10}.3^3=81^{10}.27\)
Vì 81 tận cùng là 1 nên \(81^{10}\)tận cùng bằng 1 suy ra \(81^{10}.27\)tận cùng bằng 7 . Do vậy \(3^{43}\)tận cùng bằng 7
Khi đó \(43^{43}\)tận cùng bằng 7 (1)
Ta thấy chữ số tận cùng của \(17^{17}\)chính là chữ số tận cùng của \(7^{17}\)
Ta có \(7^{17}=7^{16}.7=\left(7^4\right)^4.7=2401^4.7\)
Vì 2401 tận cùng bằng 1 nên \(2401^4\)tận cùng bằng 1 suy ra \(2401^4.7\)tận cùng bằng 7 hay \(7^{17}\)tận cùng bằng 7
Khi đó\(17^{17}\)tận cùng bằng 7 (2)
Từ (1) và (2) suy ra \(43^{43}-17^{17}\)tận cùng bằng 0 hay \(43^{43}-17^{17}\)chia hết cho 10
\(\frac{1}{8}=\frac{1}{8}\)
\(\frac{1}{11}+\frac{1}{12}+\frac{1}{13}<\frac{3}{10}\)
\(\frac{1}{41}+\frac{1}{42}+\frac{1}{43}<\frac{3}{40}\)
-> A <\(\frac{1}{8}+\frac{3}{10}+\frac{3}{40}=\frac{20}{40}=\frac{1}{2}\)
\(A=\left(4^0+4^2\right)+\left(4^1+4^3\right)+.....\left(4^{95}+4^{97}\right)=17\left(1+4+4^2+.....+4^{95}\right)\)
=> A chia hết cho 17
\(A=\left(1+4\right)+\left(4^2+4^3\right)+.....+\left(4^{96}+4^{97}\right)=5\left(1+4^2+4^4+....+4^{96}\right)\)
=> A chia hết cho 5
Mà (17;5) =1
=> A chia hết cho 17.5 =85
Đề cho là A= 4+41+42+...+497 chứ có phải A = 40+41+42+....+497 đâu