Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
\(\dfrac{a+b}{a-b}=\dfrac{c+a}{c-a}\)
\(\Rightarrow\dfrac{a+b}{c+a}=\dfrac{a-b}{c-a}=\dfrac{a+b+a-b}{c+a+c-a}=\dfrac{a}{c}\) (T/c dãy tỷ số = nhau)
\(\Rightarrow\dfrac{a+b}{c+a}=\dfrac{a}{c}\Rightarrow c\left(a+b\right)=a\left(c+a\right)\)
\(\Rightarrow ac+bc=ac+a^2\Rightarrow a^2=bc\)
B2:
a/b=b/c=c/a=a+b+c/b+c+a=1
suy ra a/b=1 suy ra a=b=1(vì hai số bằng nhau mới có tích là 1)
...................................................................................................
với b/c và c/a cũng tương tự như trên và sẽ suy ra a=b=c
Ta có :
A + B = 81x20y12 + 32x10z20
Ta thấy 81x20y12 \(\ge\)0 và 32x10z20 \(\ge\)0 nên A + B = 0
\(\Rightarrow\hept{\begin{cases}x^{20}y^{12}=0\\x^{10}z^{20}=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=0\\y=z=0\end{cases}}\)( y và z bất kì khi x = 0 ; x bất kì khi y = z = 0 )
a) \(\frac{x}{2}=\frac{y}{5}=\frac{z}{4}\)
Áp dụng tính chất dãy tỉ số bằng nhau , ta có:
\(\frac{x}{2}=\frac{y}{5}=\frac{z}{4}=\frac{2x}{4}=\frac{3y}{15}=\frac{z}{4}=\frac{2x-3y+z}{4-15+4}=\frac{112}{7}=16\)
\(\frac{x}{2}=16=>x=32\)
\(\frac{y}{5}=16=>x=80\)
\(\frac{z}{4}=16=>z=64\)
Câu b) tương tự chỉ cần thay số vào nha bạn
\(A+B=0\)
\(\Leftrightarrow81x^{20}y^{12}+32x^{10}z^{20}=0\)
=>x=y=z=0
Bài 1 : x/3 = y/4 = z/5 => x²/9 = y²/16 = z²/25
=> 2x²/18 = 2y²/32 = 3z²/75
=> x²/9 = (2x² + 2y² - 3z²)/(18 + 32 - 75) = - 100/(-25) = 1/4
=> x²/9 = 1/4 => x² = 9/4 => x = ±3/2
y²/16 = 1/4 => y² = 4 => y = ± 2
z²/25 = 1/4 => z² = 25/4 => z = ±5/2
Mà x, y, z cùng dấu.
Vậy (x ; y ; z) = (3/2 ; 2 ; 5/2) , (-3/2 ; -2 ; -5/2)
B3 ko tìm được x,y,z thỏa mãn do kết quả là 1 số không dương
Câu a tự làm nhé
b, \(\frac{2x+3}{24}=\frac{3x-1}{32}\)
\(\Leftrightarrow32(2x+3)=24(3x-1)\)
\(\Leftrightarrow64x+96=72x-24\)
\(\Leftrightarrow64x+96-72x=-24\)
\(\Leftrightarrow96-8x=-24\Leftrightarrow x=15\)