Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(A+B=0\)
\(\Leftrightarrow\left(-3x^5y^3\right)^4+\left(2x^2z^4\right)^5=0\)
\(\Leftrightarrow81x^{20}y^{12}+32x^{10}z^{20}=0\)
\(\Leftrightarrow x^{10}\left(81x^{10}y^{12}+32z^{20}\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^{10}=0\\81x^{10}y^{12}+32z^{20}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0\\z=0\end{matrix}\right.\)
Vậy: (x,y,z)=(0;0;0)
ta có :
\(M=3x^5y^3-4x^4y^3+2x^4y^3+7xy^2-3x^5y^3=-2x^4y^3+7xy^2\)
Bậc của M là \(4+3=7\)
tại x=1 và y=-1 ta có \(M=-2.1^4.\left(-1\right)^3+7.1.\left(-1\right)^2=2+7=9\)
Ta có :
A + B = 81x20y12 + 32x10z20
Ta thấy 81x20y12 \(\ge\)0 và 32x10z20 \(\ge\)0 nên A + B = 0
\(\Rightarrow\hept{\begin{cases}x^{20}y^{12}=0\\x^{10}z^{20}=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=0\\y=z=0\end{cases}}\)( y và z bất kì khi x = 0 ; x bất kì khi y = z = 0 )
a, M = (3x5y3 – 3x5y3) + (- 4x4y3 + 2x4y3) + 7xy2 b, – Thay x = 1; y = -1 vào biểu thức, ta có:
|
a) \(M=3x^5y^3-4x^4y^3+2x^4y^3+7xy^2-3x^5y^3\)
\(=\left(3x^5y^3-3x^5y^3\right)+\left(-4x^4y^3+2x^4y^3\right)+7xy^2\)
\(=-2x^4y^3+7xy^2\)
Đa thức M có bậc 7
b) Thay x=1 và y=-1 vào đa thức M=\(-2x^4y^3+7xy^2\) ta được
\(\left(-2\right)\times1^4\times\left(-1^3\right)+7\times1\times\left(-1^2\right)=-5\)
Vậy đa thức trên có giá trị bằng -5 tại x=1 và y=-1
T mk nha bạn ^...^
a)Theo đa thức ở đề bài
=>M=7xy2-2x4y3(vì các hạng tử có thể cộng trừ với nhau)
b)M=7*1*(-1)2-2*14*(-1)3=9
B2:
a/b=b/c=c/a=a+b+c/b+c+a=1
suy ra a/b=1 suy ra a=b=1(vì hai số bằng nhau mới có tích là 1)
...................................................................................................
với b/c và c/a cũng tương tự như trên và sẽ suy ra a=b=c
\(A+B=0\)
\(\Leftrightarrow81x^{20}y^{12}+32x^{10}z^{20}=0\)
=>x=y=z=0