Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ x - y = 2 \(\Rightarrow x=y+2\)
Thế vào đa thức Q ta có: \(Q=\left(y+2\right)^2-y^2+\left(y+2\right)y=y^2+6y+4\)
\(\Rightarrow Q=y^2+6y+9-5=\left(y+3\right)^2-5\ge-5\)
Vậy min Q = -5 khi y = -3, x = -1.
Chúc em học tập tốt :)
đa thức trên có nghiệm \(\Leftrightarrow x^2-10x=0\)
\(\Leftrightarrow x.\left(x-10\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-10=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x-0\\x=10\end{cases}}}\)
Vậy \(x\in\left\{0;10\right\}\)là nghiệm của đa thức trên
Câu 1 :
Ta có: \(f\left(x\right)=0\Leftrightarrow x^2+2x-3=0\)
\(\Leftrightarrow\left(x+1\right)^2-4=0\)
\(\Leftrightarrow\left(x+1\right)^2=4\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=4\\x+1=-4\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\x=-5\end{cases}}}\)
Vậy \(x\in\left\{-5;3\right\}\)là nghiệm của đa thức f(x)
Câu 2 :
\(q\left(x\right)=x^2-10x+29\)
\(=\left(x-5\right)^2+4\)
Ta có: \(\left(x-5\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-5\right)^2+4\ge4\forall x\)
Vậy đa thức trên ko có nghiệm
dễ mà
câu 1
f(x)=x^2+2x-3
ta có f(x)=0
suy ra x^2+2x-3=0
tương đương:x^2-x+3x-3=0
tương đương:x(x-1)+3(x-1)=0
tương đương: (x-1)(x+3)=0
tương đương: x-1=0 x=1
x+3=0 x=-3
vậy đa thức f(x) có hai nghiệm là 1 và -3
câu 2: x^2-10x+29
tương đương: x^2-5x-5x+25+4
tương đương: x(x-5)-5(x-5)+4
tương đương: (x-5)(x-5)+4
tương đương: (x-5)^2+4
vì (x-5)^2> hoặc bằng 0 với mọi x
4>0
suy ra x^2-10x+29 vô nghiệm
\(B\left(x\right)=2x^2-10x+12\)
\(B\left(x\right)=\left(2x^2-4x\right)-\left(6x-12\right)\)
\(B\left(x\right)=2x\left(x-2\right)-6\left(x-2\right)\)
\(B\left(x\right)=\left(2x-6\right)\left(x-2\right)\)
Mà : \(B\left(x\right)=0\)
\(\Rightarrow\left(2x-6\right)\left(x-2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2x-6=0\\x-2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=3\\x=2\end{cases}}\)
Vậy x = 2 ; 3
Đặt P(x)=0
\(\Leftrightarrow x^2-3x-2=0\)
\(\text{Δ}=\left(-3\right)^2-4\cdot1\cdot\left(-2\right)=17>0\)
Do đó; Phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{3-\sqrt{17}}{2}\\x_2=\dfrac{3+\sqrt{17}}{2}\end{matrix}\right.\)
Cho A = 0
=> \(25x^22-10x=0\)
\(50x^2-10x=0\)
\(10x.\left(5x+1\right)=0\)
\(\Rightarrow10x=0\Rightarrow x=0\)
\(5x+1=0\Rightarrow5x=-1\Rightarrow x=\frac{-1}{5}\)
KL: x = 0; x= -1/5 là nghiệm của A