K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2S+1 là lũy thừa của 3

23 tháng 6 2017

trình bày ra mà kết quả cũng ko đúng

6 tháng 8 2016

3/2+5/4+9/8/+17/16+33/32-6+x-1/x+1=31/32-2/2015

=(1+1/2)+(1+1/4)+(1+1/8)+(1+1/16)+(1+1/32-6+x-1/x+1=31/32-2/2015

=(1/2+1/4+1/8+1/16+1/32)+(1+1+1+1+1)-6+x-1/x+1=31/32-2/2015

=31/32+5-6+x-1/x+1=31/32-2/2015

=5-6+x-1/x+1=31/32-2/2015-31/32

=-1+x-1/x+1=-2/2015

=x-1/x+1=-2/2015- -1

=x-1/x+1=2013/2015

=>x=2014

24 tháng 12 2022

a,       A = 1 + 3 + 32 +  33 +....+32022

     3A   =      3  + 32  + 33 +.....+32022 + 32023

3A - A  =     32023 - 1

      2A =     32023 - 1

2A - 22023 = 32023 - 1 - 22023 

2A - 22023 = -1 

b, x \(\in\) Z và x + 10 \(⋮\) x - 1 ( đk x# 1)

                      x + 10 \(⋮\) x - 1 

            \(\Leftrightarrow\) x - 1 + 11 \(⋮\) x - 1

                            11 \(⋮\) x - 1

                    x-1 \(\in\) { -11; -1; 1; 11}

                    x     \(\in\) { -10; 0; 2; 12}

Kết luận các số nguyên x thỏa mãn yêu cầu đề bài là :

                   x   \(\in\) { -10; 0; 2; 12}

16 tháng 11 2021

\(1,Y=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^{96}+3^{97}+3^{98}\right)\\ Y=\left(1+3+3^2\right)\left(1+3^3+...+3^{96}\right)\\ Y=13\left(1+3^3+...+3^{96}\right)⋮13\\ 2,A=\left(1+3\right)+\left(3^2+3^3\right)+...+\left(3^{2018}+3^{2019}\right)\\ A=\left(1+3\right)\left(1+3^2+...+3^{2019}\right)\\ A=4\left(1+3^2+...+3^{2019}\right)⋮4\\ 3,\Leftrightarrow2\left(x+4\right)=60\Leftrightarrow x+4=30\Leftrightarrow x=36\)

16 tháng 11 2021

Giúp mình cả bài 4,5 ở dưới được ko?

18 tháng 6 2018

a,

A = 1 + 3 + 32 + 33 + ... + 3119 

3A = 3.(1 + 3 + 32 + 33 + ... + 3119

3A = 3 + 32 + 33 + 34+ ... + 3120

2A = 3A - A = (3 + 32 + 33 + 34 + ... + 3120) - (1 + 3 + 32 + 33 + ... + 3119

2A = 3120 - 1 

A = \(\frac{3^{120}-1}{2}\)

Vậy A = \(\frac{3^{120}-1}{2}\)

b, Ta có : 3120 - 1 + 1 = 27x 

<=> 3120 = 27x 

<=> 3120 = (33)x 

<=> 3120 = 3x 

<=> x = 120 

Vậy x = 120 

c, A có chia hết cho 5 và 13 

19 tháng 6 2018

Sua cho \(\left(3^3\right)^x=3^{3x}\) nha 

\(\Rightarrow3^{120}=3^{3x}\Rightarrow x=\frac{120}{3}=40\)

1 tháng 9 2023

a) \(A=1+2+2^2+...+2^{80}\)

\(2A=2+2^2+2^3+...+2^{81}\)

\(2A-A=2+2^2+2^3+...+2^{81}-1-2-2^2-...-2^{80}\)

\(A=2^{81}-1\)

Nên A + 1 là:

\(A+1=2^{81}-1+1=2^{81}\)

b) \(B=1+3+3^2+...+3^{99}\)

\(3B=3+3^2+3^3+...+3^{100}\)

\(3B-B=3+3^2+3^3+...+3^{100}-1-3-3^2-...-3^{99}\)

\(2B=3^{100}-1\)

Nên 2B + 1 là:

\(2B+1=3^{100}-1+1=3^{100}\)

1 tháng 9 2023

2) 

a) \(2^x\cdot\left(1+2+2^2+...+2^{2015}\right)+1=2^{2016}\)

Gọi:

\(A=1+2+2^2+...+2^{2015}\)

\(2A=2+2^2+2^3+...+2^{2016}\)

\(A=2^{2016}-1\)

Ta có:

\(2^x\cdot\left(2^{2016}-1\right)+1=2^{2016}\)

\(\Rightarrow2^x\cdot\left(2^{2016}-1\right)=2^{2016}-1\)

\(\Rightarrow2^x=\dfrac{2^{2016}-1}{2^{2016}-1}=1\)

\(\Rightarrow2^x=2^0\)

\(\Rightarrow x=0\)

b) \(8^x-1=1+2+2^2+...+2^{2015}\)

Gọi: \(B=1+2+2^2+...+2^{2015}\)

\(2B=2+2^2+2^3+...+2^{2016}\)

\(B=2^{2016}-1\)

Ta có:

\(8^x-1=2^{2016}-1\)

\(\Rightarrow\left(2^3\right)^x-1=2^{2016}-1\)

\(\Rightarrow2^{3x}-1=2^{2016}-1\)

\(\Rightarrow2^{3x}=2^{2016}\)

\(\Rightarrow3x=2016\)

\(\Rightarrow x=\dfrac{2016}{3}\)

\(\Rightarrow x=672\)