Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(M=2020+2020^2+...+2020^{10}\)
\(M=\left(2020+2020^2\right)+\left(2020^3+2020^4\right)+...+\left(2020^9+2020^{10}\right)\)
\(M=2020\left(1+2020\right)+2020^3\left(1+2020\right)+...+2020^9\left(1+2020\right)\)
\(M=2021\left(2020+2020^3+...+2020^9\right)⋮2021\).
b) Bạn làm tương tự câu a).
b, \(A=2021+2021^2+...+2021^{2020}\)
\(=2021\left(1+2021\right)+...+2021^{2019}\left(1+2021\right)\)
\(=2022\left(2021+...+2021^{2019}\right)⋮2022\)
Vậy ta có đpcm
c) \(M=\frac{2019}{2020}+\frac{2020}{2021}\) và \(N=\frac{2019+2020}{2020+2021}\)
Ta có \(\frac{2019}{2020}>\frac{2019}{2020+2021}\)
\(\frac{2020}{2021}>\frac{2020}{2020+2021}\)
\(\Rightarrow\frac{2019}{2020}+\frac{2020}{2021}< \frac{2019+2020}{2020+2021}=N\)
\(\Rightarrow M>N\)
\(B=\frac{2^{2020}+2}{2^{2021}+2}=\frac{2\left(2^{2019}+1\right)}{2\left(2^{2020}+1\right)}=\frac{2^{2019}+1}{2^{2020}+1}\)
vậy A=B=\(\frac{2^{2019}+1}{2^{2020}+1}\)
\(B=\frac{2^{2020}+2}{2^{2021}+2}\)
\(=\frac{2\left(2^{2019}+1\right)}{2\left(2^{2020}+1\right)}\)
\(=\frac{2^{2019}+1}{2^{2020}+1}=A\)
Vậy \(A=B\)
P/s: Bài này mk thường thấy dạng như phía dưới, bn đọc tham khảo
\(B=\frac{2^{2020}+1}{2^{2021}+1}< \frac{2^{2020}+1+1}{2^{2021}+1+1}=\frac{2^{2020}+2}{2^{2021}+2}=\frac{2^{2019}+1}{2^{2020}+1}=A\)
Vậy \(A>B\)
\(A=\dfrac{1}{2020}+\dfrac{1}{2020^2}+...+\dfrac{1}{2020^{2021}}\)
\(\Rightarrow2020A=1+\dfrac{1}{2020}+...+\dfrac{1}{2020^{2020}}\)
\(\Rightarrow2020A-A=\left(1+\dfrac{1}{2020}+...+\dfrac{1}{2020^{2020}}\right)-\left(\dfrac{1}{2020}+\dfrac{1}{2020^2}+...+\dfrac{1}{2020^{2021}}\right)\)
\(\Rightarrow2019A=1-\dfrac{1}{2020^{2021}}< 1\Rightarrow A< \dfrac{1}{2019}\)
cảm ơn bạn nhé