K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 12 2022

D

22 tháng 12 2022

D nha

31 tháng 12 2022

a)= 2021.2021-2020.(2021+1)
  = 2021.(2020+1)-2020.(2021+1)
  = (2021.2020)+2021-(2020.2021)-2020
  = 1

31 tháng 12 2022

b) B= (1+2-3-4)+(5+6-7-8)+(9+10-11-12)...........+(2017+2018-2019-2020)+2021
    B= -4+(-4)+....................(-4)+2021
    B= -4x505+2021
    B= -2020 + 2021
    B = 1

AH
Akai Haruma
Giáo viên
28 tháng 11 2021

Lời giải:
a.

$5+3(-7)+4:(-2)=5+(-21)+(-2)=5-(21+2)=5-23=-(23-5)=-18$

b.

$1-2-3+4+5-6-7+8+....+2017-2018-2019+2020+2021$

$=(1-2-3+4)+(5-6-7+8)+....+(2017-2018-2019+2020)+2021$

$=0+0+....+0+2021=2021$

19 tháng 4 2022

a) \(2\left(\dfrac{2}{3.5}+\dfrac{4}{5.9}+...+\dfrac{16}{n\left(n+16\right)}\right)=\dfrac{16}{25}\)

\(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+...+\dfrac{1}{n}-\dfrac{1}{n+16}=\dfrac{8}{25}\)

\(\dfrac{1}{3}-\dfrac{1}{n+16}=\dfrac{8}{25}\)

\(\dfrac{n+13}{3\left(n+16\right)}=\dfrac{8}{25}\)

\(24n+384=25n+325\)

\(25n-24n=384-325\)

\(n=59\)

19 tháng 4 2022

b) Sai đề nha

\(\left\{{}\begin{matrix}\dfrac{2018}{2019}< 1\\\dfrac{2019}{2020}< 1\\\dfrac{2020}{2021}< 1\\\dfrac{2021}{2022}< 1\end{matrix}\right.\)

\(\Rightarrow\dfrac{2018}{2019}+\dfrac{2019}{2020}+\dfrac{2020}{2021}+\dfrac{2021}{2022}< 4\)

18 tháng 12 2022

S=1+(2-3)+(-4+5)+(6-7)+(-8+9)+...+(-2020+2021)
S=1-1+1-1+1+...+1
S=1+0+0+...+0
S=1

=(1+2-3-4)+(5+6-7-8)+...+(2017+2018-2019-2020)+2021

=(-4)+(-4)+...+(-4)+2021

=-4*505+2021

=1

23 tháng 2 2023

\(B=1+2-3-4+5+6-7-8+9+10-...+2018-2019-2020+2021\)

\(B=\left(1+2-3-4\right)+...+\left(2017+2018-2019-2020\right)+2021\) \(B=\left(-4\right)+...+\left(-4\right)+2021+2020:4=505\)  

\(B=\left(-4\right).505+2021\) \(B=\left(-2020\right)+2021\) 

\(B=1\)

27 tháng 2 2022

A = 1 + 2 - 3 - 4 + 5 + 6 - 7 - 8 + ... + 2018 – 2019 - 2020 + 2021 
 
A = (1 + 2 - 3 - 4) + ... + (2017 + 2018 – 2019 - 2020) + 2021
 
A = (-4) + ... + (-4) + 2021 + 
 
2020 : 4 = 505
 
A = (-4) . 505 + 2021 
 
A = (-2020) + 2021 
 
A = 1

Vậy A=1

Mình gửi bạn nha !!!!!

AH
Akai Haruma
Giáo viên
12 tháng 2 2023

Lời giải:
$A=1-\frac{1}{2019}+1-\frac{1}{2020}+1-\frac{1}{2021}+1+\frac{3}{2018}$

$=4+(\frac{1}{2018}-\frac{1}{2019}+\frac{1}{2018}-\frac{1}{2020}+\frac{1}{2018}-\frac{1}{2021})$

$> 4+0+0+0+0=4$