K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
2 tháng 3 2021

a) \(M=2020+2020^2+...+2020^{10}\)

\(M=\left(2020+2020^2\right)+\left(2020^3+2020^4\right)+...+\left(2020^9+2020^{10}\right)\)

\(M=2020\left(1+2020\right)+2020^3\left(1+2020\right)+...+2020^9\left(1+2020\right)\)

\(M=2021\left(2020+2020^3+...+2020^9\right)⋮2021\).

b) Bạn làm tương tự câu a). 

2 tháng 3 2021

b, \(A=2021+2021^2+...+2021^{2020}\)

\(=2021\left(1+2021\right)+...+2021^{2019}\left(1+2021\right)\)

\(=2022\left(2021+...+2021^{2019}\right)⋮2022\)

Vậy ta có đpcm 

20 tháng 2 2023

Nếu như a là số chính phương thì a có dạng : \(a^2\) và các chữ số tận cùng của chúng phải là các số : \(1;4;9;16;25;36;49...\)

Xét a  ta có : \(10^{2022};10^{2021};10^{2020};10^{2019}\) đều có chữ số tận cùng là : 0

\(\Rightarrow a=1....0+8\)

\(\Rightarrow a=1...8\)

mà số chính phương không có số nào tận cùng bằng 8

\(\Rightarrow a\) không phải là số chính phương

7 tháng 5 2023

Ta có:2019>4
=>2019/2020+2020/2021+2021/2022+2019>4
=>a>4(dpcm)

`@` `\text {Ans}`

`\downarrow`

`a)`

Ta có: `2020` là lũy thừa bậc chẵn

`=>`\(\left(-3\right)^{2020}=3^{2020}\)

`M = `\(3^{2020}-3^{2020}=0\)

`=> 0 = 0`

`=> M = N`

`b)`

`M =`\(\left(-3\right)^{2021}+3^{2020}\)

`=`\(3^{2020}-3^{2021}\)

Vì \(3^{2021}>3^{2020}\)

`=>`\(3^{2020}-3^{2021}< 0\)

`N = [ (-3)]^0`

`= (-3)^0`

`= 1`

Vì `1 > 0`

`=> M < N.`

`@` `\text {Duynamlvhg}`

a: M=3^2020-3^2020=0

b: M=-3^2021+3^2020=-3^2020(3-1)=-3^2020*2<0

N=[(-3)]^0=1

=>M<N

29 tháng 3 2020

2019^2020 tận cùng là 1, 2021^2019 tận cùng là 1 => 2019^2020 + 2021^2019 + 2022 tận cùng là 4 suy ra số dư là 4

28 tháng 12 2022

Ta có A = 5 + 52 + 53 + ... + 52021

5A = 52 + 53 + 54 + ... + 52022

5A - A = ( 52 + 53 + 54 + ... + 52022 ) - ( 5 + 52 + 53 + ... + 52021 )

4A = 52022 - 5

Vậy 4A + 5 = 52022 - 5 + 5 = 52022

2020/2021<1

2021/2022<1

2022/2023<1

2023/2020=1+1/2020+1/2020+1/2020>1+1/2021+1/2022+1/2023

=>B>2020/2021+2021/2022+2022/2023+1/2021+1/2022+1/2023+1=4

B/A

\(=\dfrac{1+\dfrac{2020}{2}+1+\dfrac{2019}{3}+...+1+\dfrac{1}{2021}+1}{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2021}+\dfrac{1}{2022}}\)

\(=\dfrac{2022\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2021}+\dfrac{1}{2022}\right)}{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2021}+\dfrac{1}{2022}}=2022\)

26 tháng 9 2021

Ta có: \(B=2020.2021.2022=\left(2021-1\right).\left(2021+1\right).2021=\left(2021-1\right)^2.2021< 2021^2.2021=A\)