Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=20182+20162+20142+...+42 +22-(20172 +20152+20132+...+ 32 + 1)
A=(2018²-2017²)+(20162-20152)+(2014²-2013²)+...+(2² −1²)
A=2018+2017+2016+2015+2014+2013+...+2+1
\(A=\dfrac{2018\left(2018+1\right)}{2}=\text{2 037 171}\)
\(201^2=\left(200+1\right)^2=200^2+2.200.1+1^2=40000+400+1=40401\)
\(498^2=\left(500-2\right)^2=500^2-2.500.2+2^2=250000-2000+4=248004\)
PT đã cho tương đương với:
\(\left(\frac{x}{2017}+1\right)+\left(\frac{x+1}{2016}+1\right)=\left(\frac{x+2}{2015}+1\right)+\left(\frac{x+3}{2014}+1\right)\)
\(\Leftrightarrow\frac{x+2017}{2017}+\frac{x+2017}{2016}=\frac{x+2017}{2015}+\frac{x+2017}{2014}\)
\(\Leftrightarrow\left(x+2017\right)\left(\frac{1}{2017}+\frac{1}{2016}\right)=\left(x+2017\right)\left(\frac{1}{2015}+\frac{1}{2014}\right)\)
\(\Leftrightarrow x+2017=0\Leftrightarrow x=-2017\)