K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 9 2017

a) M = 1 + 3 + 32 + ... + 3119

=> 3M = 3 + 32 + ... + 3120

=> 3M - M = 3 + 32 + ... + 3120 - ( 1 + 3 + 32 + ... + 3119)

=> 2M = 3 + 32 + ... + 3120 - 1 - 3 - 32 - 3119

=> 2M = 3120 - 1

=> M = \(\frac{3^{120}-1}{2}\)

b) M = 1 + 3 + 32 + ... + 3119

=> M = (1+3+32+33)+...+(3116+3117+3118+3119)

=> M = 40 + ... + 3116.(1+3+32+33)

=> M = 40 + ... + 3116.40

=> M = 40.(1+...+3116\(⋮\)5 => M \(⋮\)5.

M = 1 + 3 + 32 + ... + 3119

=> M = (1+3+32) + ... + (3117+3118+3119)

=> M = (1+3+32) + ... + 3117.(1+3+32)

=> M = 13 + ... + 3117.13

=> M = 13.(1+...+3117\(⋮\)13 => M \(⋮\)13

23 tháng 12 2018

chuẩn

22 tháng 7 2015

3M=3+32+33+34+...+3119+3120

3M-M=(3+32+33+34+...+3119+3120)-(1+3+32+33+...+3118+3119)

2M=3120-1=>M=(3120-1):2

22 tháng 7 2015

a) M =  1 +3 +3+3+ ....+ 3118 +3119

3M= 3 +3+3+ ....+ 3119 +3120

3M-M= (3 +3+3+ ....+ 3119 +3120)-(1 +3 +3+3+ ....+ 3118 +3119)

2M= 3120-1

M= \(\frac{3^{120}-1}{2}\)

b) M=1 +3 +3+3+ ....+ 3118 +3119

= (1 +3 +3+33 )+(34+35+36+37)+....+ (3117+3118 +3119)

= 40+34.(1 +3 +3+3)+38.(1 +3 +3+3)+....+3117.(1 +3 +3+3)

= 40+34.40+38.40+....+3117.40

= 40.(1+34+38+....+3117

vì 40 chia hết cho 5

=> M chia hết cho 5.

M=1 +3 +3+3+ ....+ 3118 +3119

= (1+3+32)+(33+34+35)+....+(3117+3118+3119)

= 13+33.13+36+....+3117.13

= 13.(1+33+36+....+3117)

Vì 13 chia hết cho 13

=> M chia hết cho 13.

 

 

\(A=7\left(1+7+7^2\right)+7^4\left(1+7+7^2\right)+...+7^{118}\left(1+7+7^2\right)\)

\(=57\left(7+7^4+...+7^{118}\right)⋮57\)

8 tháng 3 2022

\(A=7\left(1+7+7^2\right)+...+7^{118}\left(1+7+7^2\right)\)

\(=57\left(7+...+7^{118}\right)⋮57\)

220 đồng dư với 2(mod 2)

=>\(220^{119^{69}}\)đồng dư với 0(mod 2)

119 đồng dư với 1(mod 2)

=>\(119^{69^{220}}\)đồng dư với 1(mod 2)

69 đồng dư với 1(mod 2)

=>\(69^{220^{119}}\)đồng dư với 1(mod 2)

=>\(220^{119^{60}}+119^{69^{220}}+69^{220^{119}}\)chia hết cho 2

220 đồng dư với 1(mod 3)

=>\(220^{119^{69}}\)đồng dư với 1(mod 3)

119 đồng dư với -1(mod 3)

=>\(119^{69^{220}}\)đồng dư với -1(mod 3)

69 đồng dư với 0(mod 3)

=>\(69^{220^{119}}\)đồng dư với 0(mod 3)

=>\(220^{119^{69}}+119^{69^{220}}+69^{220^{119}}\)chia hết cho 3

220 đồng dư với -1(mod 17)

=>\(220^{119^{69}}\)đồng dư với -1(mod 17)

119 đồng dư với 0(mod 17)

=>\(119^{69^{220}}\)đồng dư với 0(mod 17)

69 đồng dư với 1(mod 17)

=>\(69^{220^{119}}\)đồng dư với 1(mod 17)

=>\(220^{119^{69}}+119^{220^{69}}+69^{220^{119}}\)chia hết cho 17

vì (2;3;17)=1=>\(220^{119^{69}}+119^{220^{69}}+69^{220^{119}}\)chia hết cho 102

=>đpcm

31 tháng 12 2015

Giả sử A chia hết cho 102

=>A chia hết cho 3(*)

Nhưng 220 chia 3 dư 1

=>\(220^{11969}\) chia 3 dư 1(1)

119 chia 3 dư 2

=>\(119^2\)chia 3 dư 1

=>\(\left(119^2\right)^{34610}\) chia 3 dư 1(2)

69 chia hết cho 3

=>69^220119 cũng chia hết cho 3(3)

Từ (1),(2)và (3)

=>A chia 3 dư 2

Mâu thuẫn với (*)

=>SAI ĐỀ bạn à

Nếu thấy bài làm của mình đúng thì tick nha bạn,cảm ơn nhiều.

3 tháng 1 2016

ủa??? Mình xem lời giải thấy đúng mà bạn. Sử dụng mod casio ý.

12 tháng 12 2015

Vào câu hỏi tương tự nha bạn