Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử trong 100 số nguyên dương đã cho không tồn tại 2 số nào bằng nhau
Không mất tính tổng quát, giả sử \(a_1< a_2< a_3< ...< a_{100}\)
\(\Rightarrow a_1\ge1;a_2\ge2;a_3\ge3;....;a_{100}\ge100\Rightarrow\frac{1}{a_1^2}+\frac{1}{a_2^2}+\frac{1}{a^2_3}...+\frac{1}{a^2_{100}}\le\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}\left(1\right)\)
Lại có: \(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}< 1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}=1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}=\frac{199}{100}\left(2\right)\)
Từ (1) và (2) => \(\frac{1}{a_1^2}+\frac{1}{a^2_2}+...+\frac{1}{a^2_{100}}< \frac{199}{100}\) trái với giả thiết
Vậy tồn tại ít nhất 2 số bằng nhau trong 100 số a1,a2,...,a100
cách làm như thế này có đúng không nhỉ ? nếu đúng thì tích cho mik nhé !
a2^2= a1.a3 (c )
a3^2=a2.a4 (d)
từ (c) và (d) suy ra : a1/a2=a2/a3=a3/a4
=> (a1/a2)^3=(a2/a3)^3= (a3/a4)^3= a1/a2.a2/a3.a3/a4= a1/a4
mặt khác :(a1/a2)^3=(a2/a3)^3= (a3/a4)^3= a1^3/a2^3= a2^3/a3^3=a3^3/a4^3
= a1^3+a2^3+a3^3/a2^3+a3^3+a4^3
từ đó suy ra : a1/a4= a1^3+a2^3+a3^3/a2^3+a3^3+a4^3