Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử trong 2019 số trên không có 2 số nào nào bằng nhau
Không mất tính tổng quát : g/s : \(a_{2019}>...>a_2>a_1\ge1\)
=> \(\frac{1}{a_1^2}+\frac{1}{a_2^2}+...+\frac{1}{a_{2019}^2}\le\frac{1}{1^2}+\frac{1}{2^2}+...+\frac{1}{2019^2}< 1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2018.2019}\)
\(=1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2018}-\frac{1}{2019}=2-\frac{1}{2019}< 2\)Vô lí với giả thiết
Vậy điều giả sử là sai
Vậy trong 2019 số tồn tại ít nhất 2 số bằng nhau
Giả sử rằng trong 44 số đã cho, không có hai số nào bằng nhau . Vai trò các số này bình đẳng nên ta giả sử \(a_1< a_2< ...< a_{44}\). Vì a1 , a2 ,..., a44 là các số nguyên dương nên ta có thể gọi \(a_1\ge2\), \(a_2\ge3\).... , \(a_{44}\ge45\)(Dễ thấy \(a_1=1\)thì không tồn tại các giá trị \(a_j\) \(\left(j=2,3,...,44\right)\)thỏa mãn đề bài)
Khi đó : \(\frac{1}{a_1^2}+\frac{1}{a_2^2}+...+\frac{1}{a_{44}^2}\le\frac{1}{2^2}+...+\frac{1}{45^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{44.45}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{44}-\frac{1}{45}=1-\frac{1}{45}< 1\)
Như vậy đẳng thức không xảy ra (vô lí) => điều giả sử sai.
Vậy trong 44 số đã cho tồn tại 2 số bằng nhau. (đpcm)
Tham khảo cách làm và đề sau:
Cho 2015 số nguyên dương a1;a2;...;a2016 thỏa mãn
\(\frac{1}{a_1}+\frac{1}{a_2}+....+\frac{1}{a_{2016}}=300\)
CMR:tồn tại ít nhất 2 số đã cho bằng nhau.
Giải
Giả sử trong 2016 sô đã cho ko có 2 số nào bằng nhau,ko mất tính tổng quát giả sử a1<a2<....<a2016
Vì a1,a2,....,a2016 đều là số nguyên dương nên ta suy ra \(a_1\ge1;a_2\ge2;...;a_{2016}\ge2016\)
Suy ra \(\frac{1}{a_1}+\frac{1}{a_2}+...+\frac{1}{a_{2016}}< 1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}\)
\(=1+\left(\frac{1}{2}+\frac{1}{3}\right)+\left(\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}\right)+...+\left(\frac{1}{1024}+\frac{1}{1025}+....+\frac{1}{2016}\right)\)
\(< 1+\frac{1}{2}\cdot2+\frac{1}{2^2}\cdot2^2+...+\frac{1}{2^{10}}\cdot2^{10}=11< 30\)
Mâu thuẫn vs gt ->Giả sử sai
=>Trong 2016 số đã cho có ít nhất 2 số bằng nhau
Ta có \(\frac{a_1}{a_2}=\frac{a_2}{a_3}=\frac{a_3}{a_4}=...=\frac{a_{2020}}{a_{2021}}=\frac{a_1+a_2+a_3+...+a_{2020}}{a_2+a_3+a_4+...+a_{2021}}\)(dãy tỉ só bằng nhau)
=> \(\frac{a_1}{a_2}=\frac{a_1+a_2+a_3+...+a_{2020}}{a_2+a_3+a_4+...+a_{2021}}\)
<=> \(\left(\frac{a_1}{a_2}\right)^{2020}=\left(\frac{a_1+a_2+a_3+...+a_{2020}}{a_2+a_3+a_4+...+a_{2021}}\right)^{2020}\)
<=> \(\frac{a_1}{a_2}.\frac{a_1}{a_2}.\frac{a_1}{a_2}...\frac{a_1}{a_2}=\left(\frac{a_1+a_2+a_3+...+a_{2020}}{a_2+a_3+a_4+...+a_{2021}}\right)^{2020}\)
<=> \(\frac{a_1}{a_2}.\frac{a_2}{a_3}.\frac{a_3}{a_4}...\frac{a_{2020}}{a_{2021}}=\left(\frac{a_1+a_2+a_3+...+a_{2020}}{a_2+a_3+a_4+...+a_{2021}}\right)^{2020}\)
<=> \(\frac{a_1}{a_{2021}}=\left(\frac{a_1+a_2+a_3+...+a_{2020}}{a_2+a_3+a_4+...+a_{2021}}\right)^{2020}\)
nếu các giá trị a1; ..., a2013 không bằng nhau thì GTLN của vế trái sẽ là khi a1 = 1; a2 = 2; ..., a2013 = 2013.
giờ chỉ cần chứng minh \(\frac{1}{1}+\frac{1}{2}+...+\frac{1}{2013}< 1007\) . (cái này bạn có thể tự chứng minh).
khi đó VT luôn nhỏ hơn VP nên phải có các giá trị a bằng nhau.
Chúc bạn thành công!
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{a_1}{a_2}=\frac{a_2}{a_3}=...=\frac{a_{2007}}{a_{2008}}=\frac{a_{2008}}{a_1}=\frac{a_1+a_2+...+a_{2007}+a_{2008}}{a_2+a_3+...+a_{2008}+a_1}=1\)
Do đó : \(a_1=a_2=...=a_{2007}=a_{2008}\)
\(\Rightarrow\)\(N=\frac{a_1^2+a_2^2+...+a_{2008}^2}{\left(a_1+a_2+...+a_{2008}\right)^2}=\frac{a_1^2+a_1^2+...+a_1^2}{\left(a_1+a_1+...+a_1\right)^2}=\frac{2018a_1^2}{2018^2a_1^2}=\frac{1}{2018}\)
Vậy \(N=\frac{1}{2018}\)
Chúc bạn học tốt ~
Ta có
\(\frac{a_1}{a_2}+\frac{a_2}{a_3}+...+\frac{a_{2008}}{a_1}=\frac{a_1+...+a_{12}+...+a_{2008}}{a_2+a_3+...+a_1}=1\)
Từ đó a1 = a2 = a3 = ... = a2008
\(\Rightarrow N=\frac{a^2_1+a^2_2+...+a_{2008}^2}{\left(a_1+a_2+...+a_{2008}\right)^2}=\frac{2008a^2_1}{\left(2008a_1\right)^2}=\frac{1}{2008}\)