K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Có \(C^2_4=6\left(đường\right)\) đi qua 2 điểm trong 4 điểm đã cho

30 tháng 10 2018

Đáp án C

Số cách lấy 3 điểm từ 10 điểm trên là .

Số cách lấy 3 điểm bất kỳ trong 4 điểm A1, A2, A3, A4 là:

Khi lấy 3 điểm bất kỳ trong 4 điểm A1, A2, A3, A4 thì sẽ không tạo thành tam giác.

Số tam giác tạo thành : tam giác.

23 tháng 5 2019

Đáp án là C

Số cách lấy 3 điểm từ 10 điểm phân biệt là C 10 3 = 120  

Số cách lấy 3 điểm bất kì trong 4 điểm  A 1 , A 2 , A 3 , A 4   C 4 3 = 4  

Khi lấy 3 điểm bất kì trong 4  điểm A 1 , A 2 , A 3 , A 4  thì sẽ không tạo thành tam giác.

Như vậy, số tam giác tạo thành :  120- 4 = 116 tam giác.

25 tháng 3 2018

Đáp án A.

Ta có 3TH.

+) TH1: 2 trong số 4 điểm A1, A2, A3, A4 tạo thành 1 cạnh, suy ra có C 4 2 . 6 = 36 tam giác.

+) TH2: 1 trong số 4 điểm A1, A2, A3, A4 là 1 đỉnh của tam giác, suy ra có 4 C 6 2 = 60 tam giác.

+) TH3: 0 có đỉnh nào trong 4 điểm A1, A2, A3, A4 đỉnh của tam giác có C 6 3 = 20 tam giác. Suy ra có 36 + 60 + 20 = 116 tam giác có thể lập được.

8 tháng 6 2019

Đáp án B.

Số tam giác có 3 đỉnh là 3 trong 15 điểm đã cho bằng số cách chọn 3 điểm trong 15 điểm đã cho và bằng (không quan tâm đến thứ tự đỉnh)

19 tháng 12 2017

Đáp án B

Các cách xác định mặt phẳng đúng: 2; 4 ; 8

1. Đi qua 3 điểm phân biệt không thẳng hàng

3. Trong trường hợp 2 đường thẳng chéo nhau thì không thể xác định được mặt phẳng

5. Song song với 2 đường thẳng cắt nhau  Có vô số mặt phẳng như vậy.

Phương pháp xác định mặt phẳng chỉ đúng khi mặt phẳng này đi qua 1 điểm  cho trước

6. Song song với 2 đường thẳng chéo nhau  Có vô số mặt phẳng như vậy

Phương pháp xác định mặt phẳng chỉ đúng khi mặt phẳng này đi qua 1 điểm  cho trước

7. Đi qua 1 điểm và song song với một đường thẳng cho trước.  Có vô số mặt phẳng như vậy

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

- Không thể tìm được đường thẳng khác đi qua hai điểm A,B.

- Trả lời câu hỏi: Với mỗi 2 điểm phân biệt sẽ có duy nhất một đường thẳng đi qua. Như vậy, với 3 điểm không thẳng hàng sẽ tạo thành 3 cặp điểm phân biệt nên sẽ có 3 đường thẳng đi qua 2 trong số 3 điểm đó

2 tháng 9 2018

Chọn B

Số tam giác có 3 đỉnh thuộc S bằng số tổ hợp chập 3 của 10:  C 10 3 = 120

19 tháng 8 2018

Chọn B                   

Mỗi tam giác cần 3 đỉnh thuộc S, mỗi tam giác được tạo thành là một tổ hợp chập 3 của 10 phần tử.

Vậy số tam giác thỏa mãn là C 10 3 = 120.

Mức độ nhận biết, thông hiểu