K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 2 2021

Ta có : \(P=a^2+b^2+c^2\)

\(\Rightarrow P+2=a^2+b^2+c^2+2\left(ab+bc+ac\right)\)

\(\Rightarrow P+2=\left(a+b+c\right)^2\ge0\)

\(\Rightarrow P\ge-2\)

Vậy MinP = -2 tại a + b + c = 0 .

9 tháng 2 2021

Mik thấy a,b,c>0 \(\Rightarrow a+b+c>0\)

\(\Rightarrow2P-2=2a^2+2b^2+2c^2-2ab-2bc-2ca=\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\) \(\Rightarrow2P\ge2\Rightarrow P\ge1\) Dấu bằng xảy ra \(\Leftrightarrow a=b=c=\dfrac{\sqrt{3}}{3}\) Vậy...

NV
14 tháng 2 2020

\(\Delta=b^2-4ac\le0\Rightarrow b^2\le4ac\Rightarrow\frac{a}{b}.\frac{c}{b}\ge\frac{1}{4}\)

Đặt \(\left(\frac{a}{b};\frac{c}{b}\right)=\left(x;y\right)\Rightarrow xy\ge\frac{1}{4}\)

\(F=4x+y\ge4\sqrt{xy}\ge4\sqrt{\frac{1}{4}}=2\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}x=\frac{1}{4}\\y=1\end{matrix}\right.\) hay \(b=c=4a\)