Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
Ta có:
\(\left(a+b+c+d\right)-\left(a+c+d\right)._{\left(1\right)}\)
\(=a+b+c+d-a-c-d.\)
\(=\left(a-a\right)+\left(c-c\right)+\left(d-d\right)+b.\)
\(=0+0+0+b=b.\)
Thay số vào \(_{\left(1\right)}\)\(\Rightarrow1-2=b\Rightarrow b=-1\in Z.\)
\(\left(a+b+c+d\right)-\left(a+b+d\right)._{\left(2\right)}\)
\(=a+b+c+d-a-b-d.\)
\(=\left(a-a\right)+\left(b-b\right)+\left(d+d\right)+c.\)
\(=0+0+0+c=c.\)
Thay số vào \(_{\left(2\right)}\)\(\Rightarrow1-3=c\Rightarrow c=-2\in Z.\)
\(\left(a+b+c+d\right)-\left(a+b+c\right)_{\left(3\right)}.\)
\(=a+b+c+d-a-b-c.\)
\(=\left(a-a\right)+\left(b-b\right)+\left(c-c\right)+d.\)
\(=0+0+0+d=d.\)
Thay số vào \(_{\left(3\right)}\)\(\Rightarrow1-4=d\Rightarrow d=-3\in Z.\)
\(\Rightarrow a+b+c+d=1.\)
\(a+\left(-1\right)+\left(-2\right)+\left(-3\right)=1.\)
\(\Rightarrow a=1-\left(-1\right)-\left(-2\right)-\left(-3\right).\)
\(\Rightarrow a=1+1+2+3=7\in Z.\)
Vậy \(\left\{a;b;c;d\right\}=\left\{7;-1;-2;-3\right\}.\)
Do a + b + c + d = 1 mà a + c + d = 2
=> b = 1 - 2 = -1
=> c = 1 - 3 = -2
=> d = 1 - 4 = -3
=> a = 1 - (-1 - 2 - 3) = 7
@Valentine
Ta có: \(\frac{2}{3}a=\frac{1}{4}b\)
\(\Leftrightarrow\frac{2a}{3}=\frac{b}{4}\)
\(\Leftrightarrow2a=\frac{3b}{4}\)
hay \(a=\frac{3b}{4}:2=\frac{3b}{8}\)
Ta có: \(\frac{1}{2}b=\frac{1}{3}c\)
\(\Leftrightarrow\frac{b}{2}=\frac{c}{3}\)
hay \(c=\frac{3b}{2}\)
Ta có: a+b+c=90
\(\Leftrightarrow\frac{3b}{8}+b+\frac{3b}{2}=90\)
\(\Leftrightarrow b\left(\frac{3}{8}+1+\frac{3}{2}\right)=90\)
\(\Leftrightarrow b\cdot\frac{23}{8}=90\)
hay \(b=90:\frac{23}{8}=\frac{720}{23}\)
Ta có: \(a=\frac{3b}{8}\)(cmt)
hay \(a=3\cdot\frac{720}{23}:8=\frac{270}{23}\)
Ta có: a+b+c=90
\(\Leftrightarrow c=90-a-b=90-\frac{270}{23}-\frac{720}{23}=\frac{1080}{23}\)
Vậy: \(\left(a,b,c\right)=\left(\frac{270}{23};\frac{720}{23};\frac{1080}{23}\right)\)
1. a, 3x + 2 \(⋮2x-1\)
Có 3(2x - 1) \(⋮2x-1\)
Và 2(3x - 2) \(⋮2x-1\)
=> 6x - 4 - 6x + 3 \(⋮2x-1\)
<=> -1 \(⋮2x-1\)
=> 2x - 1 \(\inƯ\left(1\right)=\left\{\pm1\right\}\)
=> 2x = 2; 0
=> x = 1; 0 (thỏa mãn)
@Lớp 6B Đoàn Kết
1. b, x2 - 2x + 3 \(⋮x-1\)
<=> x(x - 2) + 3 \(⋮x-1\)
<=> x(x - 1) - x + 3 \(⋮x-1\)
<=> x(x - 1) - (x - 1) - 2 \(⋮x-1\)
<=> (x - 1)2 - 2 \(⋮x-1\)
<=> -2 \(⋮x-1\)
=> x - 1 \(\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
=> x = 2; 0; 3; -1 (thỏa mãn)
@Lớp 6B Đoàn Kết
ta có : abc = 100a + 10b + c (1)
cba = 100c + 10b + a = (n-2)2 (2)
lấy (2) trừ (1) ta có: 99(a - c) = 4n - 5 => 4n - 5 \(⋮\) 99
100 \(\le\) n2 - 1 \(\le\) 999
<=> \(101\le n^2\le1000\)
<=> \(11\le n\le31\)
<=> \(44\le4n\le124\)
<=> \(39\le4n-5\le119\)
mà 4n - 5 \(⋮\) 99
=> 4n - 5 = 99
=> n = 26
=>abc = 262 - 1 = 675
VẬy.....
\(\text{Vì }\left[a,b\right],\left[b,c\right],\left[c,a\right]\text{ là BCNN}\)
\(\Rightarrow\left[a,b\right]=a.b;\left[b,c\right]=b.c;\left[c,a\right]=c.a\)
\(\Rightarrow\frac{1}{\left[a+b\right]}+\frac{1}{\left[b+c\right]}+\frac{1}{\left[c+a\right]}=\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\)
\(\text{Giả sử }a< b< c\)
\(\Rightarrow a\le2;b\le3;c\le5\)
\(\Rightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\le\frac{1}{2.3}+\frac{1}{3.5}+\frac{1}{5.2}=\frac{1}{3}\)
\(\text{hay }\frac{1}{\left[a+b\right]}+\frac{1}{\left[b+c\right]}+\frac{1}{c+a}\le\frac{1}{3}\left(đpcm\right)\)