\(⋮\) 2x-1

b) x2-2x+3

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 8 2017

1. a, 3x + 2 \(⋮2x-1\)
Có 3(2x - 1) \(⋮2x-1\)
Và 2(3x - 2) \(⋮2x-1\)
=> 6x - 4 - 6x + 3 \(⋮2x-1\)
<=> -1 \(⋮2x-1\)
=> 2x - 1 \(\inƯ\left(1\right)=\left\{\pm1\right\}\)
=> 2x = 2; 0
=> x = 1; 0 (thỏa mãn)
@Lớp 6B Đoàn Kết

8 tháng 8 2017

1. b, x2 - 2x + 3 \(⋮x-1\)
<=> x(x - 2) + 3 \(⋮x-1\)
<=> x(x - 1) - x + 3 \(⋮x-1\)
<=> x(x - 1) - (x - 1) - 2 \(⋮x-1\)
<=> (x - 1)2 - 2 \(⋮x-1\)
<=> -2 \(⋮x-1\)
=> x - 1 \(\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
=> x = 2; 0; 3; -1 (thỏa mãn)
@Lớp 6B Đoàn Kết

b: =>3|x-5|=8+4=12

=>|x-5|=4

=>x-5=4 hoặc x-5=-4

=>x=9 hoặc x=1

d: =>2x+6=3-3x-2

=>2x+6=1-3x

=>5x=-5

hay x=-1

e: \(\Leftrightarrow x-3\inƯC\left(70;98\right)\)

\(\Leftrightarrow x-3\in\left\{1;2;7;14\right\}\)

mà x>8

nên \(x\in\left\{10;17\right\}\)

11 tháng 1 2018

a)
\(\left|x\right|-2\left|x\right|+3\left|x\right|=16+6\left|x\right|-19\)
\(\left|x\right|-2\left|x\right|+3\left|x\right|-6\left|x\right|=16-19\)
\(\left|x\right|.\left(1-2+3-6\right)=-3\)
\(\left|x\right|.\left(-4\right)=-3\)
\(\left|x\right|=\dfrac{3}{4}\)
\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{3}{4}\\x=\dfrac{3}{4}\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}x=-\dfrac{3}{4}\\x=\dfrac{3}{4}\end{matrix}\right.\)



b,
2.(|x| - 5) - 15 = 9
\(2.\left(\left|x\right|-5\right)=9+15\)
\(2.\left(\left|x\right|-5\right)=24\)
\(\left|x\right|-5=24:2\)
\(\left|x\right|-5=12\)
\(\left|x\right|=12+5\)
\(\left|x\right|=17\)
\(\Rightarrow\left[{}\begin{matrix}x=-17\\x=17\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}x=-17\\x=17\end{matrix}\right.\)

c,
|8 - 2x| + |4y - 16| = 0
\(\Rightarrow\left\{{}\begin{matrix}\left|8-2x\right|=0\\\left|4y-16\right|=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}8-2x=0\\4y-16=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}2x=8\\4y=16\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=4\\y=4\end{matrix}\right.\)
Vậy \(\left\{{}\begin{matrix}x=4\\y=4\end{matrix}\right.\)


d,

|x - 14| + |2y - x| = 0
\(\Rightarrow\left\{{}\begin{matrix}\left|x-14\right|=0\\\left|2y-x\right|=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x-14=0\\2y-x=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=14\\2y=x\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=14\\2y=14\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=14\\y=7\end{matrix}\right.\)
Vậy \(\left\{{}\begin{matrix}x=14\\y=7\end{matrix}\right.\)

2.Tìm x, y, z biết

a,
2.|3x| + |y + 3| + |z - y| = 0
\(\Rightarrow\left\{{}\begin{matrix}2.\left|3x\right|=0\\\left|y+3\right|=0\\\left|z-y\right|=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\left|3x\right|=0\\y+3=0\\z-y=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}3x=0\\y=-3\\z=y\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=0\\y=-3\\z=-3\end{matrix}\right.\)
Vậy \(\left\{{}\begin{matrix}x=0\\y=-3\\z=-3\end{matrix}\right.\)

b, (x - 3y)2 + | y + 4|= 0
\(\Rightarrow\left\{{}\begin{matrix}\left(x-3y\right)2=0\\\left|y+4\right|=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x-3y=0\\y+4=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=3y\\y=-4\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=3.\left(-4\right)\\y=-4\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=-12\\y=-4\end{matrix}\right.\)
Vậy \(\left\{{}\begin{matrix}x=-12\\y=-4\end{matrix}\right.\)

11 tháng 7 2018

a/ Với mọi x, y ta có :

\(\left\{{}\begin{matrix}\left|x-2\right|\ge0\\y^2\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left|x-2\right|+y^2\ge0\)

\(\Leftrightarrow\left|x-2\right|+y^2+5\ge5\)

\(\Leftrightarrow A\ge5\)

Dấu "=" xảy ra khi :

\(\left\{{}\begin{matrix}\left|x-2\right|=0\\y^2=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=0\end{matrix}\right.\)

Vậy...

b/ Với mọi x ta có :

\(\left|x-2\right|\ge0\)

\(\Leftrightarrow\left|x-2\right|-1\ge-1\)

\(\Leftrightarrow B\ge-1\)

Dấu "=" xảy ra khi :

\(\left|x-2\right|=0\Leftrightarrow x=2\)

Vậy ....

c/ Với mọi x ta có :

\(\left|1-x\right|\ge0\)

\(\Leftrightarrow2\left|1-x\right|\ge0\)

\(\Leftrightarrow2\left|1-x\right|+1\ge1\)

\(\Leftrightarrow C\ge1\)

Dấu "=" xảy ra khi :

\(\left|1-x\right|=0\Leftrightarrow x=1\)

Vậy ...

d: =>x+5=0 và 3-y=0

=>x=-5 hoặc y=3

e: =>x-2=0 và y+1=0

=>x=2 và y=-1

1: \(A=11-\left|x-1\right|-\left(y-1\right)^2< =11\)

Dấu '=' xảy ra khi x=1 và y=1

3: \(C=\left|x-1\right|-\left|2018-x\right|\le\left|x-1+2018-x\right|=2017\)

Dấu '=' xảy ra khi x-1>0 và 2018-x<0

=>x>2018

16 tháng 7 2018

a) \(\left|x-2\right|\ge0\Leftrightarrow-\left|x-2\right|\le0\Leftrightarrow-\left|x-2\right|-1\le-1\Rightarrow P\le-1\)

Vậy P đạt gtln bằng -1 <=> x= 2

b) \(\left(x-1\right)^2\ge0\Leftrightarrow-\left(x-1\right)^2\le0\Leftrightarrow1-\left(x-1\right)^2\le1\Rightarrow E\le1\)

Vậy E đạt gtlnn bằng 1 <=> x=1

c) \(\left(-x+2\right)^2\ge0\Leftrightarrow-\left(-x+2\right)^2\le0\Leftrightarrow-\left(-x+2\right)^2+3\le3\Rightarrow G\le3\)

G đạt gtln bằng 3 <=> x=2

d) 0 biết, đăng riêng lại đi, cho bạn khác thấy => giải

P/s: PEGA(sus) ^^!

16 tháng 7 2018

d, A = \(\left|x-1\right|\) + \(\left|x-2\right|\) nhé

xin lỗi các mọi người vì lỗi sai này

28 tháng 7 2018

Ôn tập cuối năm phần số học

27 tháng 7 2018

ai thương tình giúp tui đi . HELP ME !

a: =>5x=3x-6

=>2x=-6

hay x=-3

b: \(\Leftrightarrow\left(x-3\right)^2=4\cdot5^2=100\)

=>x-3=10 hoặc x-3=-10

=>x=13 hoặc x=-7

c: \(\left|x^3+1\right|+2\ge2\forall x\)

Dấu '=' xảy ra khi x=-1

16 tháng 7 2018

1. Ta có: \(\left|x-1\right|\ge0\)

\(\Rightarrow\left|x-1\right|+15\ge15\)

\(\Rightarrow A\ge15\)

Dấu "=" xảy ra \(\Leftrightarrow\left|x-1\right|=0\)

\(\Leftrightarrow x-1=0\)

\(\Leftrightarrow x=1\)

Vậy, MinA = 15 \(\Leftrightarrow x=1\)

2. Ta có: \(\left(x-1\right)^2\ge0\)

\(\Rightarrow2+\left(x-1\right)^2\ge2\)

\(\Rightarrow B\ge2\)

Dấu "=" xảy ra \(\Leftrightarrow\left(x-1\right)^2=0\)

\(\Leftrightarrow x-1=0\)

\(\Leftrightarrow x=1\)

Vậy MinB = 2 \(\Leftrightarrow x=1\)

3. Ta có: \(\left\{{}\begin{matrix}\left|x-1\right|\text{​​}\ge x-1\\\left|x-2\right|=\left|2-x\right|\ge2-x\end{matrix}\right.\)

\(\Rightarrow\left|x-1\right|+\left|2-x\right|\ge\left(x-1\right)+\left(2-x\right)\)

\(\Rightarrow\left|x-1\right|+\left|x-2\right|\ge1\)

\(\Rightarrow C\ge1\)

Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x-1\ge0\\2-x\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge1\\x\le2\end{matrix}\right.\)

\(\Leftrightarrow1\le x\le2\)

Vậy MinC = 1 \(\Leftrightarrow1\le x\le2\)