K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 12 2021

ai giup mik dc ko ak pls mik can gap

 

22 tháng 12 2021

\(a,A=\dfrac{5-3}{5+2}=\dfrac{2}{7}\\ b,B=\dfrac{3x-9+2x+6-3x+9}{\left(x-3\right)\left(x+3\right)}=\dfrac{2\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}=\dfrac{2}{x-3}\\ c,C=AB=\dfrac{x-3}{x+2}\cdot\dfrac{2}{x-3}=\dfrac{2}{x+2}\\ C=-\dfrac{1}{3}\Leftrightarrow x+2=-6\Leftrightarrow x=-8\left(tm\right)\)

16 tháng 12 2022

a: \(P=\dfrac{a+3}{a}\cdot\dfrac{a^2-9-6a+18}{\left(a-3\right)\left(a+3\right)}\)

\(=\dfrac{\left(a-3\right)^2}{a\left(a-3\right)}=\dfrac{a-3}{a}\)

b: Để P=-2 thì -2a=a-3

=>-3a=-3

=>a=1

c: Để P nguyên thì a-3 chia hết cho a

=>-3 chia hết cho a

mà a<>0; a<>3; a<>-3

nên \(a\in\left\{1;-1\right\}\)

a:

ĐKXĐ: x<>2

|2x-3|=1

=>\(\left[{}\begin{matrix}2x-3=1\\2x-3=-1\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}x=2\left(loại\right)\\x=1\left(nhận\right)\end{matrix}\right.\)

Thay x=1 vào A, ta được:

\(A=\dfrac{1+1^2}{2-1}=\dfrac{2}{1}=2\)

b: ĐKXĐ: \(x\notin\left\{-1;2\right\}\)

\(B=\dfrac{2x}{x+1}+\dfrac{3}{x-2}-\dfrac{2x^2+1}{x^2-x-2}\)

\(=\dfrac{2x}{x+1}+\dfrac{3}{x-2}-\dfrac{2x^2+1}{\left(x-2\right)\left(x+1\right)}\)

\(=\dfrac{2x\left(x-2\right)+3\left(x+1\right)-2x^2-1}{\left(x+1\right)\left(x-2\right)}\)

\(=\dfrac{2x^2-4x+3x+3-2x^2-1}{\left(x+1\right)\left(x-2\right)}\)

\(=\dfrac{-x+2}{\left(x+1\right)\left(x-2\right)}=-\dfrac{1}{x+1}\)

c: \(P=A\cdot B=\dfrac{-1}{x+1}\cdot\dfrac{x\left(x+1\right)}{2-x}=\dfrac{x}{x-2}\)

\(=\dfrac{x-2+2}{x-2}=1+\dfrac{2}{x-2}\)

Để P lớn nhất thì \(\dfrac{2}{x-2}\) max

=>x-2=1

=>x=3(nhận)

30 tháng 4 2018

ta có:

A = \(\left(\dfrac{x+3}{2x+2}+\dfrac{3}{1-x^2}-\dfrac{x+1}{2x-2}\right):\dfrac{3}{2x^2-2}\)

= \(\left(\dfrac{x+3}{2\left(x+1\right)}-\dfrac{3}{x^2-1}-\dfrac{x+1}{2\left(x-1\right)}\right):\dfrac{3}{2\left(x^2-1\right)}\)

= \(\left(\dfrac{x+3}{2\left(x+1\right)}-\dfrac{3}{\left(x-1\right)\left(x+1\right)}-\dfrac{x+1}{2\left(x-1\right)}\right):\dfrac{3}{2\left(x-1\right)\left(x+1\right)}\)

= \(\left(\dfrac{\left(x+3\right)\left(x-1\right)}{2\left(x+1\right)\left(x-1\right)}-\dfrac{6}{2\left(x-1\right)\left(x+1\right)}-\dfrac{\left(x+1\right)^2}{2\left(x-1\right)\left(x+1\right)}\right):\dfrac{3}{2\left(x-1\right)\left(x+1\right)}\)

= \(\left(\dfrac{x^2-x+3x-3-6-x^2-2x-1}{2\left(x+1\right)\left(x-1\right)}\right):\dfrac{3}{2\left(x-1\right)\left(x+1\right)}\)

= \(-\dfrac{10}{2\left(x+1\right)\left(x-1\right)}.\dfrac{2\left(x+1\right)\left(x-1\right)}{3}\)

= \(-\dfrac{10}{3}\)

Vậy phương trình trên ko phụ thuộc vào biến

2 tháng 5 2018

Thanks bn

21 tháng 9 2018

Ta có:

\(A=\left(x-4\right)\left(x-2\right)-\left(x-1\right)\left(x-3\right)\)

\(A=\left(x^2-4x-2x+8\right)-\left(x^2-x-3x+4\right)\)

\(A=\left(x^2-6x+8\right)-\left(x^2-4x+4\right)\)

\(A=x^2-6x+8-x^2+4x-4\)

\(A=-2x+4\)

Thay \(x=1\dfrac{3}{4}=\dfrac{7}{4}\) vào A ta được:

\(A=-2.\dfrac{7}{4}+4\)

\(A=-\dfrac{7}{2}+4\)

\(A=\dfrac{1}{2}\)

14 tháng 8 2018

\(A=x^2+12x+36=\left(x+6\right)^2\)

\(B=x^2+4xy+4y^2=\left(x+2y\right)^2\)

\(C=\left(3x-7\right)^2+10\left(3x-7\right)+25=\left(3x-2\right)^2\)

\(D=8x^3-12x^2+6x-1=\left(2x-1\right)^3\)

Việc còn lại bạn tự thay vào rồi tính thôi :v

14 tháng 8 2018

\(A=x^2+12x+36\)

\(A=x^2+2.x.6+6^2\)

\(A=\left(x+6\right)^2\)

Thay x = 64 ta được

\(A=\left(64+6\right)^2\)

\(A=70^2\)

\(A=4900\)

\(B=x^2+4xy+4y^2\)

\(B=x^2+2.x.2y+\left(2y\right)^2\)

\(B=\left(x+2y\right)^2\)

Thay x = 2,8 và y = 3,6 ta được

\(B=\left(2,8+2.3,6\right)^2\)

\(B=\left(2,8+7,2\right)^2\)

\(B=10^2\)

\(B=100\)

\(C=\left(3x-7\right)^2+10\left(3x-7\right)+25\)

\(C=\left(3x-7\right)^2+2.\left(3x-7\right).5+5^2\)

\(C=\left(3x-7+5\right)^2\)

\(C=\left(3x-2\right)^2\)

Thay x = 16 ta được

\(C=\left(3.16-2\right)^2\)

\(C=\left(48-2\right)^2\)

\(C=46^2\)

\(C=2116\)

\(D=8x^3-12x^2+6x-1\)

\(D=\left(2x\right)^3-3.\left(2x\right)^2+3.\left(2x\right)-1^3\)

\(D=\left(2x-1\right)^3\)

Thay x = -1/2 ta được

\(D=\left[2.\left(-\dfrac{1}{2}\right)-1\right]^3\)

\(D=\left(-1-1\right)^3\)

\(D=\left(-2\right)^3\)

\(D=-8\)

24 tháng 7 2017

câu d

\(D=\dfrac{\left(1-x^2\right)}{x}\left(\dfrac{x^2}{x+3}-1\right)+\dfrac{3x^2-14x+3}{x^2+3x}\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ne\left\{-3;0\right\}\\D=\dfrac{\left(1-x^2\right)\left(x^2-x-3\right)+3x^2-14x+3}{x\left(x+3\right)}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ne\left\{-3;0\right\}\\D=\dfrac{x^2-x-3-x^4+x^3-3x^2+3x^2-14x+3}{x\left(x+3\right)}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ne\left\{-3;0\right\}\\D=\dfrac{-x^4+x^3+x^2-15x}{x\left(x+3\right)}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ne\left\{-3;0\right\}\\D=\dfrac{-x\left(x^3-x^2-x+15\right)}{x\left(x+3\right)}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ne\left\{-3;0\right\}\\D=\dfrac{-\left(x^3-x^2-x+15\right)}{\left(x+3\right)}\end{matrix}\right.\)

19 tháng 11 2018

a, \(\dfrac{x^2-x}{x-2}+\dfrac{4-3x}{x-2}\)

\(=\dfrac{x^2-x+4-3x}{x-2}=\dfrac{x^2-4x+4}{x-2}\)

19 tháng 11 2018

c) \(\dfrac{2}{x^2-9}+\dfrac{1}{x+3}\)

Ta có: \(\dfrac{1}{x+3}=\dfrac{1\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}=\dfrac{x-3}{x^2-9}\)

\(\Rightarrow\dfrac{2}{x^2-9}+\dfrac{1}{x+3}=\dfrac{2}{x^2-9}+\dfrac{x-3}{x^2-9}=\dfrac{2+x-3}{x^2-9}=\dfrac{x-1}{x^2-9}\)