Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Cho x,y > 0 .Tim GTNN cua A = \(\dfrac{x^2}{y^2}+\dfrac{4y^2}{x^2}-\dfrac{x}{y}-\dfrac{2y}{y}+1\)
Lời giải:
Áp dụng BĐT Cauchy-Schwarz:
$\frac{1}{x^2+y^2}+\frac{1}{2xy}\geq \frac{4}{x^2+y^2+2xy}=\frac{4}{(x+y)^2}\geq \frac{4}{(\frac{1}{2})^2}=16$
$\frac{1}{4xy}+64xy\geq 8$
$\frac{5}{4xy}\geq \frac{5}{(x+y)^2}\geq \frac{5}{(\frac{1}{2})^2}=20$
Cộng theo vế:
$\Rightarrow P\geq 44$
Vậy $P_{\min}=44$ khi $x=y=\frac{1}{4}$
\(M=a+b+\frac{1}{a}+\frac{1}{b}\ge a+b+\frac{4}{a+b}=a+b+\frac{1}{a+b}+\frac{3}{a+b}\)
\(\Rightarrow M\ge2\sqrt{\frac{a+b}{a+b}}+3=5\)
\(\Rightarrow M_{min}=5\) khi \(a=b=\frac{1}{2}\)
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{\left(1+1+1\right)^2}{x+y+z}=\frac{9}{k}.Dau"="xayrakhi:x=y=z=\frac{k}{3}\)
\(J=\frac{1}{a^2+b^2}+\frac{1}{2ab}+\frac{1}{2ab}\ge\frac{4}{a^2+b^2+2ab}+\frac{1}{\frac{2\left(a+b\right)^2}{4}}=\frac{6}{\left(a+b\right)^2}\ge6\)
\(\Rightarrow J_{min}=6\) khi \(a=b=\frac{1}{2}\)
\(\sqrt{a+b}.\sqrt{\frac{1}{a}+\frac{1}{b}}=\sqrt{\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)}\)
\(=\sqrt{2+\frac{a}{b}+\frac{b}{a}}\ge\sqrt{2+2\sqrt{\frac{a}{b}.\frac{b}{a}}}=\sqrt{2+2}=2\)
Dấu bằng xảy ra khi a = b.
\(A=\frac{\left(1-x^2\right)\left(1-y^2\right)}{x^2y^2}=\frac{\left[\left(x+y\right)^2-x^2\right]\left[\left(x+y\right)^2-y^2\right]}{x^2y^2}\)
\(=\frac{y\left(2x+y\right).x\left(x+2y\right)}{x^2y^2}=\frac{2\left(x^2+y^2\right)+5xy}{xy}=2\left(\frac{x}{y}+\frac{y}{x}\right)+5\ge4\sqrt{\frac{xy}{xy}}+5=9\)
Dấu "=" xảy ra khi \(x=y=\frac{1}{2}\)
Không cho dữ kiện nào liên quan đến y thì làm sao mà tìm bạn