Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Vì mua vở Minh được giảm 10% giá gốc ban đầu => Minh chỉ cần phải trả 90% giá gốc ban đầu
Với cùng số tiền đó, Minh mua được tổng cộng số quyển vở là:
18: 90% = 20 (quyển vở)
Đáp số: 20 quyển vở
1:
Giá mới của cuốn vở sau khi giảm sẽ bằng:
100%-10%=90% so với giá cũ
Với cùng số tiền đó thì Minh sẽ mua được:
18:90%=20(cuốn vở)
2:
Gọi ba phần được chia lần lượt là a,b,c
Theo đề, ta có: 5a=2b=4c
=>\(\dfrac{a}{4}=\dfrac{b}{10}=\dfrac{c}{5}=k\)
=>a=4k; b=10k; c=5k
\(a^3+b^3+c^3=9512\)
=>\(64k^3+1000k^3+125k^3=9512\)
=>\(k^3=8\)
=>k=2
=>a=8; b=20; c=10
A=8+20+10=38
Câu hỏi của manisana - Toán lớp 7 - Học toán với OnlineMath
Gọi tổng số vở chia cho 3 lớp là: M ( M> 12; quyển vở)
+) Gọi số vở của 3 lớp 7 gồm A; B; C dự định chia là: a; b; c ( \(\inℕ^∗\); quyển vở)
=> \(\frac{a}{7}=\frac{b}{6}=\frac{c}{5}\)
Áp dụng dãy tỉ số bằng nhau ta có: \(\frac{a}{7}=\frac{b}{6}=\frac{c}{5}=\frac{a+b+c}{7+6+5}=\frac{M}{18}\)
=> \(\hept{\begin{cases}a=\frac{7M}{18}\\b=\frac{6M}{18}\\c=\frac{5M}{18}\end{cases}}\)
+) Gọi số vở của 3 lớp 7 gồm A; B; C thực tế chia là: x; y; z ( \(\inℕ^∗\); quyển vở)
=> \(\frac{x}{6}=\frac{y}{5}=\frac{z}{4}\)
Áp dụng dãy tỉ số bằng nhau ta có: \(\frac{x}{6}=\frac{y}{5}=\frac{z}{4}=\frac{x+y+z}{6+5+4}=\frac{M}{15}\)
=> \(\hept{\begin{cases}x=\frac{6M}{15}\\y=\frac{5M}{15}\\z=\frac{4M}{15}\end{cases}}\)
Bây giờ chúng ta sẽ đi tìm xem lớp nào thực tế nhận ít hơn là dự định:
+) Xét lớp 7A dự định nhận: \(\frac{7M}{18}\)quyển vở; thực tế nhận: \(\frac{6M}{15}\)quyển vở
mà \(\frac{7M}{18}< \frac{6M}{15}\) nên lớp 7A sẽ được nhận nhiều hơn
+) Xét lớp 7B dự định nhận: \(\frac{6M}{18}\)quyển vở; thực tế nhận: \(\frac{5M}{15}\)quyển vở
mà \(\frac{6M}{18}=\frac{5M}{15}\) nên số vở lớp 7B nhận đc không thay đổi
+ Xét lớp 7C dự định nhận: \(\frac{5M}{18}\)quyển vở; thực tế nhận: \(\frac{4M}{15}\)quyển vở
mà \(\frac{5M}{18}>\frac{4M}{15}\) nên lớp 7C sẽ được nhận ít hơn theo dự định
=> Số vở lớp 7C nhận được ít hơn là:
\(\frac{5M}{18}-\frac{4M}{15}=12\)
<=> \(M\left(\frac{5}{18}-\frac{4}{15}\right)=12\)
<=> \(M.\frac{1}{90}=12\)
<=> M = 1080
=> Theo thực tế số vở mỗi lớp nhận đc là:
\(\hept{\begin{cases}x=\frac{6.1080}{15}=432\\y=\frac{5.1080}{15}=360\\z=\frac{4.1080}{15}=288\end{cases}}\)( thỏa mãn)
Vậy số vở 3 lớp A; B; C nhận đc theo thứ tự là: 432 quyển vở; 360 quyển vở và 288 quyển vở.
Gọi số sách của tủ 1, tủ 2 và tủ 3 sau khi chuyển lần lượt là x, y, z (cuốn) (x, y, z ∈ N*; x, y, z < 2250)
Theo bài ra ta có: x : y : z = 16 : 15 : 14 (1) và x + y + z = 2250
Do đó số sách sau khi chuyển của tủ 1 là 800, tủ 2 là 750 và tủ 3 là 700 cuốn
Vậy trước khi chuyển 100 cuốn từ tủ 1 sang tủ 3 thì
+) Tủ 1 có: 800 + 100 = 900 cuốn
+) Tủ 2 có: 750 cuốn
+) Tủ 3 có: 700 – 100 = 600 cuốn
\(120=2^3\cdot3\cdot5;48=2^4\cdot3;60=2^2\cdot3\cdot5\)
=>\(ƯCLN\left(120;48;60\right)=2^2\cdot3=12\)
Để có thể chia đều 120 quyển vở, 48 cây bút chì và 60 tập giấy vào các phần quà thì số phần quà phải là ước chung của 120;48;60
=>Số phần quà lớn nhất là ƯCLN(120;48;60)=12 phần
Số quyển vở của mỗi phần khi đó là: \(\dfrac{120}{12}=10\left(quyển\right)\)
Số cây bút chì của mỗi phần khi đó là \(\dfrac{48}{12}=4\left(cây\right)\)
Số tập giấy của mỗi phần khi đó là \(\dfrac{60}{12}=5\left(tập\right)\)