K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 6 2021

Bài 2:

\(\sqrt{2x-1}=5\)

=> 2x - 1 = 25

=> 2x = 26

=> x = 13

b) \(\sqrt[3]{3x+2}=-3\)

=> 3x + 2 = -27

=> 3x = -29

=> x = -29/3

P/s: Mỗi lần chỉ đc hỏi 1 bài thôi em nehs!

30 tháng 6 2021

1. ĐK: 

a, \(x\ge\dfrac{5}{2}\)

b, \(\left\{{}\begin{matrix}x\ge0\\x\ne\dfrac{9}{4}\end{matrix}\right.\)

2.

a,ĐK: \(x\ge\dfrac{1}{2}\)

PT\(\Leftrightarrow2x-1=25\Rightarrow x=13\left(tm\right)\)

b,ĐK: \(\forall x\in R\)

PT\(\Leftrightarrow3x+2=-27=>x=-\dfrac{29}{3}\) (tm)

3.

a,\(\sqrt{5}.\sqrt{1,2}.\sqrt{24}=\sqrt{120}.\sqrt{1,2}=12\)

b,\(\dfrac{\sqrt{4444}}{\sqrt{1111}}=\dfrac{\sqrt{4}.\sqrt{1111}}{\sqrt{1111}}=2\)

c,\(\sqrt{\dfrac{3}{5}}+\sqrt{\dfrac{5}{3}}-\dfrac{1}{2}\sqrt{60}=\dfrac{8}{\sqrt{15}}-\sqrt{15}=-\dfrac{7}{\sqrt{15}}\)

d,\(\sqrt{5+2\sqrt{6}}+\sqrt{5-2\sqrt{6}}=\sqrt{3}+\sqrt{2}+\sqrt{3}-\sqrt{2}=2\sqrt{3}\)

27 tháng 6 2021

Bài 3 :

\(\Leftrightarrow\sqrt{9x^2-6x+1}=\sqrt{\left(3x-1\right)^2}=\left|3x-1\right|=5\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-1=5\\3x-1=-5\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-\dfrac{4}{3}\end{matrix}\right.\)

Vậy ...

Bài 5 :

Ta có :\(x-5\sqrt{x}+7=x-2.\sqrt{x}.\dfrac{5}{2}+\dfrac{25}{4}+\dfrac{3}{4}=\left(\sqrt{x}-\dfrac{5}{2}\right)^2+\dfrac{3}{4}\)

Thấy : \(\left(\sqrt{x}-\dfrac{5}{2}\right)^2\ge0\)

\(\Rightarrow\left(\sqrt{x}-\dfrac{5}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)

\(\Rightarrow P=\dfrac{1}{x-5\sqrt{x}+7}=\dfrac{1}{\left(\sqrt{x}-\dfrac{5}{2}\right)^2+\dfrac{3}{4}}\le\dfrac{1}{\dfrac{3}{4}}=\dfrac{4}{3}\)

Vậy \(Max_P=\dfrac{4}{3}\Leftrightarrow\sqrt{x}-\dfrac{5}{2}=0\Leftrightarrow x=\dfrac{25}{4}\)
 

Bài 1: 

a) Ta có: \(\sqrt{25}\cdot\sqrt{144}+\sqrt[3]{-27}-\sqrt[3]{216}\)

\(=5\cdot12-3-6\)

\(=60-9=51\)

b) Ta có: \(\sqrt{8.1\cdot360}\)

\(=\sqrt{8.1\cdot10\cdot36}\)

\(=\sqrt{81\cdot36}\)

\(=9\cdot6=54\)

Bài 2: 

a) Ta có: \(\sqrt{80}-\sqrt{\left(2-\sqrt{5}\right)^2}+\sqrt{3\dfrac{1}{5}}\)

\(=4\sqrt{5}-\sqrt{5}+2+\dfrac{4}{\sqrt{5}}\)

\(=3\sqrt{5}+2+\dfrac{4\sqrt{5}}{5}\)

\(=\dfrac{10+19\sqrt{5}}{5}\)

b) Ta có: \(\dfrac{\sqrt{6}-\sqrt{3}}{1-\sqrt{2}}+\dfrac{3+6\sqrt{3}}{\sqrt{3}}-\dfrac{13}{\sqrt{3}+4}\)

\(=\dfrac{-\sqrt{3}\left(1-\sqrt{2}\right)}{1-\sqrt{2}}+\dfrac{\sqrt{3}\left(\sqrt{3}+6\right)}{\sqrt{3}}-\dfrac{13\left(4-\sqrt{3}\right)}{\left(4+\sqrt{3}\right)\left(4-\sqrt{3}\right)}\)

\(=-\sqrt{3}+\sqrt{3}+6-4+\sqrt{3}\)

\(=2+\sqrt{3}\)

25 tháng 9 2021

gấp lắm ạ. Mọi người giúp mình với ạ. Tối nay mình cần rồi.

12 tháng 12 2021

Bài 1: 

a: \(A=2\sqrt{3}-2\sqrt{3}+3=3\)

23 tháng 6 2021

1. \(\dfrac{2}{2-\sqrt{3}}=\dfrac{2\left(2+\sqrt{3}\right)}{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}=\dfrac{4+2\sqrt{3}}{2^2-\left(\sqrt{3}\right)^2}=\dfrac{4+2\sqrt{3}}{4-3}=4+2\sqrt{3}\)

2. \(\dfrac{1}{\sqrt{3}+\sqrt{2}}=\dfrac{\sqrt{3}-\sqrt{2}}{\left(\sqrt{3}+\sqrt{2}\right)\left(\sqrt{3}-\sqrt{2}\right)}=\dfrac{\sqrt{3}-\sqrt{2}}{\left(\sqrt{3}\right)^2-\left(\sqrt{2}\right)^2}=\dfrac{\sqrt{3}-\sqrt{2}}{3-2}\)

\(=\sqrt{3}-\sqrt{2}\)

3. \(\dfrac{1}{\sqrt{5}+\sqrt{7}}=\dfrac{\sqrt{7}-\sqrt{5}}{\left(\sqrt{5}+\sqrt{7}\right)\left(\sqrt{7}-\sqrt{5}\right)}=\dfrac{\sqrt{7}-\sqrt{5}}{\left(\sqrt{7}\right)^2-\left(\sqrt{5}\right)^2}=\dfrac{\sqrt{7}-\sqrt{5}}{7-5}\)

\(=\dfrac{\sqrt{7}-\sqrt{5}}{2}\)

4. \(\dfrac{1}{5-2\sqrt{6}}=\dfrac{5+2\sqrt{6}}{\left(5-2\sqrt{6}\right)\left(5+2\sqrt{6}\right)}=\dfrac{5+2\sqrt{6}}{5^2-\left(2\sqrt{6}\right)^2}=\dfrac{5+2\sqrt{6}}{25-24}\)

\(=5+2\sqrt{6}\)

5. \(\dfrac{3\sqrt{5}}{2\sqrt{5}-1}=\dfrac{3\sqrt{5}\left(2\sqrt{5}+1\right)}{\left(2\sqrt{5}-1\right)\left(2\sqrt{5}\right)+1}=\dfrac{30+3\sqrt{5}}{\left(2\sqrt{5}\right)^2-1^2}=\dfrac{30+3\sqrt{5}}{20-1}\)

\(=\dfrac{30+3\sqrt{5}}{19}\)

6. \(\dfrac{12}{3-\sqrt{3}}=\dfrac{12}{\sqrt{3}\left(\sqrt{3}-1\right)}=\dfrac{4\sqrt{3}}{\sqrt{3}-1}=\dfrac{4\sqrt{3}\left(\sqrt{3}+1\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}\)

\(\dfrac{12+4\sqrt{3}}{\left(\sqrt{3}\right)^2-1^2}=\dfrac{2\left(6+2\sqrt{3}\right)}{3-1}=6+2\sqrt{3}\)

7. \(\dfrac{5\sqrt{2}}{\sqrt{5}+\sqrt{3}}=\dfrac{5\sqrt{2}\left(\sqrt{5}-\sqrt{3}\right)}{\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)}=\dfrac{5\sqrt{10}-5\sqrt{6}}{\left(\sqrt{5}\right)^2-\left(\sqrt{3}\right)^2}\)

\(=\dfrac{5\sqrt{10}-5\sqrt{6}}{5-3}=\dfrac{5\sqrt{10}-5\sqrt{6}}{2}\)

8. \(\dfrac{18}{\sqrt{7}-1}=\dfrac{18\left(\sqrt{7}+1\right)}{\left(\sqrt{7}-1\right)\left(\sqrt{7}+1\right)}=\dfrac{18\left(\sqrt{7}+1\right)}{\left(\sqrt{7}\right)^2-1^2}=\dfrac{18\left(\sqrt{7}+1\right)}{7-1}\)

\(=3\left(\sqrt{7}+1\right)=3\sqrt{7}+3\)

9. \(\dfrac{9}{2\sqrt{3}-3}=\dfrac{9\left(2\sqrt{3}+3\right)}{\left(2\sqrt{3}-3\right)\left(2\sqrt{3}+3\right)}=\dfrac{9\left(2\sqrt{3}+3\right)}{\left(2\sqrt{3}\right)^2-3^2}=\dfrac{9\left(2\sqrt{3}+3\right)}{12-9}\)

\(3\left(2\sqrt{3}+3\right)=6\sqrt{3}+9\)

10. \(\dfrac{1}{2\sqrt{3}-3}=\dfrac{2\sqrt{3}+3}{\left(2\sqrt{3}-3\right)\left(2\sqrt{3}+3\right)}=\dfrac{2\sqrt{3}+3}{\left(2\sqrt{3}\right)^2-3^2}=\dfrac{2\sqrt{3}+3}{12-9}\)

\(=\dfrac{2\sqrt{3}+3}{3}\)

11. \(\dfrac{3}{2\sqrt{2}-\sqrt{5}}=\dfrac{3\left(2\sqrt{2}+\sqrt{5}\right)}{\left(2\sqrt{2}-\sqrt{5}\right)\left(2\sqrt{2}+\sqrt{5}\right)}=\dfrac{3\left(2\sqrt{2}+\sqrt{5}\right)}{\left(2\sqrt{2}\right)^2-\left(\sqrt{5}\right)^2}\)

\(=\dfrac{3\left(2\sqrt{2}+\sqrt{5}\right)}{8-5}=2\sqrt{2}+5\)

12. \(\dfrac{1+\sqrt{2}}{1-\sqrt{2}}=\dfrac{\left(1+\sqrt{2}\right)\left(1+\sqrt{2}\right)}{\left(1-\sqrt{2}\right)\left(1+\sqrt{2}\right)}=\dfrac{\left(1+\sqrt{2}\right)^2}{1^2-\left(\sqrt{2}\right)^2}=\dfrac{3+2\sqrt{2}}{-1}\)

\(=-3-2\sqrt{2}\)

13. \(\dfrac{\sqrt{3}+2}{2-\sqrt{3}}=\dfrac{\left(\sqrt{3}+2\right)\left(\sqrt{3}+2\right)}{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}=\dfrac{\left(\sqrt{3}+2\right)^2}{2^2-\left(\sqrt{3}\right)^2}=\dfrac{7+4\sqrt{3}}{4-3}=7+4\sqrt{3}\)

14. \(\dfrac{3+\sqrt{5}}{3-\sqrt{5}}=\dfrac{\left(3+\sqrt{5}\right)\left(3+\sqrt{5}\right)}{\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)}=\dfrac{\left(3+\sqrt{5}\right)^2}{3^2-\left(\sqrt{5}\right)^2}=\dfrac{14+6\sqrt{5}}{9-5}\)

\(=\dfrac{7+3\sqrt{5}}{2}\)

15. giống câu 5

16. \(\dfrac{\sqrt{5}+1}{2\sqrt{5}-4}=\dfrac{\left(\sqrt{5}+1\right)\left(2\sqrt{5}+4\right)}{\left(2\sqrt{5}-4\right)\left(2\sqrt{5}+4\right)}=\dfrac{14+6\sqrt{5}}{\left(2\sqrt{5}\right)^2-4^2}=\dfrac{14+6\sqrt{5}}{4}\)

\(=\dfrac{7+3\sqrt{5}}{2}\)

23 tháng 6 2021

- Sử dụng liên hợp thôi nha mình làm tham khảo câu 1, 4 các câu khác tương tự .

\(1,\dfrac{2}{2-\sqrt{3}}=\dfrac{2\left(2+\sqrt{3}\right)}{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}=\dfrac{4+2\sqrt{3}}{4-3}=3+2\sqrt{3}+1=\left(\sqrt{3}+1\right)^2\)

\(4,\dfrac{1}{5-2\sqrt{6}}=\dfrac{5+2\sqrt{6}}{5^2-\left(2\sqrt{6}\right)^2}=5+2\sqrt{6}\)

Bài 2:

Xét ΔABC vuông tại C có

\(CB=BA\cdot\sin60^0=12\cdot\dfrac{\sqrt{3}}{2}=6\sqrt{3}\left(cm\right)\)

21 tháng 3 2022

Dài thế ><

ktr à :>?

Bài 7:

a: Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHB vuông tại H có HE là đường cao ứng với cạnh huyền AB, ta được:

\(AE\cdot AB=AH^2\left(1\right)\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔHAC vuông tại H có HF là đường cao ứng với cạnh huyền AC, ta được:

\(AF\cdot AC=AH^2\left(2\right)\)

Từ (1), (2) suy ra \(AE\cdot AB=AF\cdot AC\)