K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 1 2018

ta có \(a^{2012}+b^{2012}=a^{2013}+b^{2013}\)

\(\Rightarrow a^{2012}-a^{2013}+b^{2012}_{ }-b^{2013}=0\)

\(\Rightarrow a^{2012}\left(1-a\right)+b^{2012}\left(1-b\right)=0\)\(\left(1\right)\)

tương tự \(a^{2013}+b^{2013}=a^{2014}+b^{2014}\)

\(\Leftrightarrow a^{2013}\left(1-a\right)+b^{2013}\left(1-b\right)=0\)\(\left(2\right)\)

trừ (1) cho (2)

ta có \(\left(a^{2012}-a^{2013}\right)\left(1-a\right)\)\(+\left(b^{2012}-b^{2013}\right)\left(1-b\right)=0\)

\(\Leftrightarrow a^{2012}\left(1-a\right)^2+b^{2012}\left(1-b\right)^2=0\)

\(a^{2012}\left(1-a\right)^2\ge0;b^{2012}\left(1-b\right)^2\ge0\)

\(\Rightarrow a=1;b=1\)

\(\Rightarrow M=20\times1+11\times1+2013=2044\)

8 tháng 1 2018

lay cai dau tru cai thu 2

xong lay cai thu 2 tru cai thu 3

xong lay ket qua dau tim dc tru ket qua sau la tim dc a=b=1

roi thay vao tinh M la xong

14 tháng 1 2017

theo bài ra ta có \(a^{2012}+b^{2012}=a^{2013}+b^{2013}=a^{2014}+b^{2014}\Rightarrow a^{2012}+b^{2012}-2\left(a^{2013}+b^{2013}\right)+a^{2014}+b^{2014}=0\)\(\Rightarrow a^{2012}+b^{2012}-2\left(a^{2013}+b^{2013}\right)+a^{2014}+b^{2014}=0\Leftrightarrow\)

\($\left(a^{1006}-a^{1007}\right)^2+\left(b^{1006}-b^{1007}\right)=0$\)

\(\Leftrightarrow\left\{\begin{matrix}a^{1006}-a^{1007}=0\\b^{1006}-b^{1007}=0\end{matrix}\right.\left\{\begin{matrix}a=0;a=1\\b=0;b=1\end{matrix}\right.\)

Khi đó P=20.0+11.0+2013=2013

hoặc P=20.1+11.0+2013=2033

hoặc p=20.0+11.1+2013=2024

15 tháng 1 2017

bạn giải lại giúp mình đc ko? mình ko hiểu j cả

28 tháng 3 2016

Ta có: 1- 2012/2013=1/2013

1- 2013/2014=1/2014

Mà 1/2013>1/2014

vậy 2012/2013<2013/2014

AH
Akai Haruma
Giáo viên
14 tháng 7

Lời giải:

Đặt $\frac{a}{2012}=\frac{b}{2013}=\frac{c}{2014}=k$

$\Rightarrow a=2012k; b=2013k; c=2014k$. Khi đó:

$A=4(a-b)(b-c)(c-a)=4(2012k-2013k)(2013k-2014k)(2014k-2012k)$

$=4(-k)(-k)(2k)=8k^3$

13 tháng 4 2015

<

24 tháng 4 2016

tui hỏng pít

17 tháng 12 2017

Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :

\(\frac{a}{2012}=\frac{b}{2013}=\frac{c}{2014}=\frac{a-b}{2012-2013}=\frac{b-c}{2013-2014}=\frac{c-a}{2014-2012}\)

\(\Rightarrow\frac{a-b}{-1}=\frac{b-c}{-1}=\frac{c-a}{2}\)

\(\Rightarrow\left(\frac{a-b}{-1}\right)\left(\frac{b-c}{-1}\right)=\left(\frac{c-a}{2}\right)^2\)

hay \(\left(a-b\right)\left(b-c\right)=\frac{\left(c-a\right)^2}{4}\)

\(\Rightarrow4\left(a-b\right)\left(b-c\right)=\left(c-a\right)^2\)

27 tháng 8 2020

Đặt \(\frac{a}{2012}=\frac{b}{2013}=\frac{c}{2014}=k\Rightarrow\hept{\begin{cases}a=2012k\\b=2013k\\c=2014k\end{cases}}\)

A = 4( a - b )( b - c ) - ( c - a )2

= 4( 2012k - 2013k )( 2013k - 2014k ) - ( 2014k - 2012k )2

= 4.( -k ).( -k ) - ( 2k )2

= 4k2 - 4k2 = 0