K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 12 2021

\(a,m=0\Leftrightarrow y=3x+2\)

Vì \(3>0\) nên hàm đồng biến

\(b,\text{Thay }x=-1;y=3\\ \Leftrightarrow-m-3+2=3\Leftrightarrow m=-4\\ c,\text{PT giao Ox: }y=0\Leftrightarrow x=-\dfrac{2}{m+3}\Leftrightarrow A\left(-\dfrac{2}{m+3};0\right)\Leftrightarrow OA=\dfrac{2}{\left|m+3\right|}\\ \text{PT giao Oy: }x=0\Leftrightarrow y=2\Leftrightarrow B\left(0;2\right)\Leftrightarrow OB=2\\ \text{Ta có }S_{OAB}=4\\ \Leftrightarrow\dfrac{1}{2}OA\cdot OB=4\Leftrightarrow\dfrac{2}{\left|m+3\right|}\cdot2=8\\ \Leftrightarrow\dfrac{4}{\left|m+3\right|}=8\\ \Leftrightarrow\left|m+3\right|=\dfrac{1}{2}\Leftrightarrow\left[{}\begin{matrix}m=-\dfrac{5}{2}\\m=-\dfrac{7}{2}\end{matrix}\right.\)

điểm kìa anh ;-;

23 tháng 3 2022

mặc dù h này chắc ko có ai lm đề ktra giữa kì nma sao mình thấy đầu tờ giấy nó lại có chữ đấy á

23 tháng 3 2022

Dạ đề thi thử c 

Gọi xy là tiếp tuyến tại A của (O)

=>góc xAC=góc ABC

xy//DE

=>góc xAE=góc AED

=>góc AED=góc ABC

Xét ΔAED và ΔABC có

góc AED=góc ABC

góc EAD chung

=>ΔAED đồng dạng với ΔABC

=>AE/AB=AD/AC

=>AE*AC=AB*AD

27 tháng 10 2021

a: \(P=\left(\dfrac{2}{\sqrt{x}-1}+\dfrac{\sqrt{x}}{\sqrt{x}+1}\right)\cdot\dfrac{\sqrt{x}}{x+\sqrt{x}+2}\)

\(=\dfrac{2\sqrt{x}+2+x-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}}{x+\sqrt{x}+2}\)

\(=\dfrac{\sqrt{x}}{x-1}\)

27 tháng 10 2021

\(P=\left(\dfrac{2}{\sqrt{x}-1}+\dfrac{\sqrt{x}}{\sqrt{x}+1}\right).\dfrac{\sqrt{x}}{x+\sqrt{x}+2}\)

\(\Rightarrow P=\dfrac{2\left(\sqrt{x}+1\right)+\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}.\dfrac{\sqrt{x}}{x+\sqrt{x}+2}\)

\(\Rightarrow P=\dfrac{x+\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}.\dfrac{\sqrt{x}}{x+\sqrt{x}+2}\)

\(\Rightarrow P=\dfrac{\sqrt{x}}{x-1}\)

\(\Rightarrow P=\dfrac{\sqrt{3+2\sqrt{2}}}{3+2\sqrt{2}-1}\)

\(\Rightarrow P=\dfrac{\sqrt{\left(\sqrt{2}+1\right)^2}}{2+2\sqrt{2}}\)

\(\Rightarrow P=\dfrac{\sqrt{2}+1}{2\left(\sqrt{2}+1\right)}\)

\(\Rightarrow P=\dfrac{1}{2}\)

 

19 tháng 8 2023

a) \(A=\left(2\sqrt{12}-\sqrt{75}+\dfrac{1}{2}\sqrt{48}\right):\sqrt{3}\)

\(A=\left(4\sqrt{3}-5\sqrt{3}+2\sqrt{3}\right):\sqrt{3}\)

\(A=\sqrt{3}:\sqrt{3}\)

\(A=1\)

b) \(B=\sqrt{\left(2-\sqrt{5}\right)^2}-\sqrt{\left(\sqrt{5}+1\right)^2}\)

\(B=\left|2-\sqrt{5}\right|-\left|\sqrt{5}+1\right|\)

\(B=-2+\sqrt{5}-\sqrt{5}-1\)

\(B=-3\)

c) \(C=\dfrac{3}{\sqrt{7}-2}-\dfrac{4}{3+\sqrt{7}}\)

\(C=\dfrac{3\left(\sqrt{7}+2\right)}{\left(\sqrt{7}-2\right)\left(\sqrt{7}+2\right)}-\dfrac{4\left(3-\sqrt{7}\right)}{\left(3+\sqrt{7}\right)\left(3-\sqrt{7}\right)}\)

\(C=\dfrac{3\left(\sqrt{7}+2\right)}{3}-\dfrac{4\left(3-\sqrt{7}\right)}{2}\)

\(C=\sqrt{7}+2-2\left(3-\sqrt{7}\right)\)

\(C=\sqrt{7}+2-6+2\sqrt{7}\)

\(C=3\sqrt{7}-4\)

d) \(D=3\sqrt{2a}-\sqrt{18a^3}+4\sqrt{\dfrac{a}{2}}-\dfrac{1}{4}\sqrt{128a}\)

\(D=3\sqrt{2a}-3a\sqrt{2a}+2\sqrt{2a}-\dfrac{1}{4}\cdot8\sqrt{2a}\)

\(D=5\sqrt{2a}-3a\sqrt{2a}-2\sqrt{2a}\)

\(D=3\sqrt{2a}-3a\sqrt{2a}\)

e) \(E=\dfrac{3+\sqrt{3}}{\sqrt{3}}-\dfrac{2}{\sqrt{3}-1}\)

\(E=\dfrac{\sqrt{3}\left(\sqrt{3}+1\right)}{\sqrt{3}}-\dfrac{2\left(\sqrt{3}+1\right)}{\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)}\)

\(E=\left(\sqrt{3}+1\right)-\dfrac{2\left(\sqrt{3}+1\right)}{2}\)

\(E=\left(\sqrt{3}+1\right)-\left(\sqrt{3}+1\right)\)

\(E=0\)

AH
Akai Haruma
Giáo viên
19 tháng 8 2023

Lời giải:

a. 

\(A=2\sqrt{\frac{12}{3}}-\sqrt{\frac{75}{3}}+\frac{1}{2}\sqrt{\frac{48}{3}}=2\sqrt{4}-\sqrt{25}+\frac{1}{2}\sqrt{16}\)

\(2.2-5+\frac{1}{2}.4=1\)

b. 

\(B=|2-\sqrt{5}|-|\sqrt{5}+1|=\sqrt{5}-2-(\sqrt{5}+1)=-3\)

c. 

\(C=\frac{3(\sqrt{7}+2)}{(\sqrt{7}-2)(\sqrt{7}+2)}-\frac{4(3-\sqrt{7})}{(3+\sqrt{7})(3-\sqrt{7})}\)

\(=\frac{3(\sqrt{7}+2)}{7-2^2}-\frac{4(3-\sqrt{7})}{3^2-7}\)

\(=\frac{3(\sqrt{7}+2)}{3}-\frac{4(3-\sqrt{7})}{2}=\sqrt{7}+2-2(3-\sqrt{7})=-4+3\sqrt{7}\)

e. 

\(E=\frac{\sqrt{3}(\sqrt{3}+1)}{\sqrt{3}}-\frac{2(\sqrt{3}+1)}{(\sqrt{3}-1)(\sqrt{3}+1)}=\sqrt{3}+1-\frac{2(\sqrt{3}+1)}{3-1^2}=(\sqrt{3}+1)-(\sqrt{3}+1)=0\)

AH
Akai Haruma
Giáo viên
19 tháng 8 2023

Những câu đã đăng rồi thì em hạn chế đăng lại nhé.

19 tháng 8 2023

dạ

8 tháng 11 2021

c, Áp dụng HTL ta được \(\left\{{}\begin{matrix}BI\cdot BM=AB^2\\BH\cdot BC=AB^2\end{matrix}\right.\Rightarrow BI\cdot BM=BH\cdot BC\)

\(\Rightarrow\dfrac{BI}{BH}=\dfrac{BC}{BM}\)

c: Xét ΔABM vuông tại A có AI là đường cao

nên \(BI\cdot BM=BA^2\left(1\right)\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(BH\cdot BC=BA^2\left(2\right)\)

Từ (1) và (2) suy ra \(BI\cdot BM=BH\cdot BC\)

hay \(\dfrac{BI}{BH}=\dfrac{BC}{BM}\)

a: Theo đề, ta có hệ phương trình:

\(\left\{{}\begin{matrix}-a+b=-20\\3a+b=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=7\\b=8-3a=8-3\cdot7=-13\end{matrix}\right.\)