K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

b: Xét tứ giác ABDC có

M là trung điểm của AD

M là trung điểm của BC

Do đó: ABDC là hình bình hành

Suy ra: AB//DC

17 tháng 12 2019

a, Xét tam giác MAB và tam giác MDC có:

AM = MD

góc AMB = góc DMC

BM = CM

Nên: tam giác MAB = tam giác MDC

b, Ta có: tam giác MAB = tam giác MDC

=> góc ABM = góc DCM

Mà 2 góc này ở vị trí so le trong

Nên : AB//CD

c, Ta có: AB//CD

=> góc GAM = góc HDM( vì G∈ AB; H∈CD và 2 góc ở vị trí so le trong)

Xét tam giác GAM và tam giác HDM có:

AG = HD

góc GAM = góc HDM

AM = MD

Nên: tam giác GAM = tam giác HDM

=> GM = MH

Mà GM và MH có chung điểm M

=> MH và MG trùng nhau

Nên: 3 điểm G,H,M thẳng hàng

Cậu xem lại bài nhé, chúc cậu học tốt!!!

18 tháng 12 2019

a) Xét 2 \(\Delta\) \(MAB\)\(MDC\) có:

\(MA=MD\left(gt\right)\)

\(\widehat{AMB}=\widehat{DMC}\) (vì 2 góc đối đỉnh)

\(MB=MC\) (vì M là trung điểm của \(BC\))

=> \(\Delta MAB=\Delta MDC\left(c-g-c\right).\)

b) Theo câu a) ta có \(\Delta MAB=\Delta MDC.\)

=> \(\widehat{ABM}=\widehat{DCM}\) (2 góc tương ứng).

Mà 2 góc này nằm ở vị trí so le trong.

=> \(AB\) // \(CD.\)

c) Nối G với M, H với M.

Xét 2 \(\Delta\) \(AGM\)\(DHM\) có:

\(AG=DH\left(gt\right)\)

\(\widehat{AMG}=\widehat{DMH}\) (vì 2 góc đối đỉnh)

\(AM=DM\left(gt\right)\)

=> \(\Delta AGM=\Delta DHM\left(c-g-c\right)\)

=> \(GM=HM\) (2 cạnh tương ứng).

Mà M nằm giữa G và H.

=> \(M\) là trung điểm của \(GH.\)

=> \(G,M,H\) thẳng hàng (đpcm).

Chúc bạn học tốt!

26 tháng 11 2018

1 Xét 2 tam giác MAB và tam giác MDC:

Ta thấy:

\(\widehat{AMB}=\widehat{DMC}\)(hai góc đối đỉnh)

BM=MC (gt)

MA=MD (gt)

Từ các giả thiết trên, suy ra:

\(\Delta MAB=\Delta MDC\left(c-g-c\right)\)

1 tháng 3 2018

5 tháng 2 2017

cần vẽ hình 0 bạn

5 tháng 2 2017

có bạn ơi

a) Xét \(\Delta MAB\)và \(\Delta MDC\)có:

          MA = MD (gt)

          \(\widehat{BMA}=\widehat{CMD}\)(2 góc đối đỉnh)

          MB = MC (gt)

\(\Rightarrow\Delta MAB=\Delta MDC\left(c-g-c\right)\)

\(\Rightarrow AB=DC\)(2 cạnh tương ứng)

     \(\widehat{BAM}=\widehat{CDM}\)(2 góc tương ứng)

Mà 2 góc này ở vị trí so le trong

\(\Rightarrow AB//CD\)

b) Xét \(\Delta ACM\)và \(\Delta DBM\)có:

          MA = MD (gt)

         \(\widehat{AMC}=\widehat{BMD}\)(2 góc đối đỉnh)

         MB = MC (gt)

\(\Rightarrow\Delta ACM=\Delta DBM\left(c-g-c\right)\)

\(\Rightarrow AC=DB\)(2 cạnh tương ứng)

Xét \(\Delta BAC\)và \(\Delta CDB\)có:

      AB = DC (cmt)

     AC = DB (cmt)

     BC là cạnh chung

\(\Rightarrow\Delta BAC=\Delta CDB\left(c-c-c\right)\)

\(\Rightarrow\widehat{BAC}=\widehat{CDB}\)(2 góc tương ứng)

c) Bn tự lm nhá!! Phần này mk chưa nghĩ ra. Tốn chất xám lắm!!!!!

a: Xét ΔMAB và ΔMDC có 

MA=MD

\(\widehat{AMB}=\widehat{DMC}\)

MB=MC

Do đó: ΔMAB=ΔMDC

b: Xét tứ giác ABDC có 

M là trung điểm của BC

M là trung điểm của AD

Do đó: ABDC là hình bình hành

Suy ra: BA=DC; AC=DB

Xét ΔBAC và ΔCDB có 

BA=CD

AC=DB

BC chung

Do đó: ΔBAC=ΔCDB

c: Xét tứ giác AEDF có

AE//DF

AE=DF

Do đó: AEDF là hình bình hành

Suy ra: AD và FE cắt nhau tại trung điểm của mỗi đường

mà M là trung điểm của AD

nên M là trung điểm của FE

hay F,M,E thẳng hàng

7 tháng 1 2022

cảm ơn