Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A-B=\left(ax+by\right)^2-\left(a^2+b^2\right)\left(x^2+y^2\right)\)
\(=a^2x^2+2axby+b^2y^2-a^2x^2-a^2y^2-b^2x^2-b^2y^2\)
\(=-\left(a^2y^2-2axby+b^2x^2\right)\)
\(=-\left(ay-bx\right)^2\le0\)
\(\Rightarrow A\le B\) dấu "=" xảy ra \(\frac{a}{x}=\frac{b}{y}\)
Xét \(\frac{a}{x}=\frac{2}{\left(\frac{8}{11}\right)}=\frac{11}{4};\frac{b}{y}=\frac{\left(-1\right)}{\left(-\frac{5}{11}\right)}=\frac{11}{5}\Rightarrow\frac{a}{x}\ne\frac{b}{y}\)
Vậy \(A< B\)
Bài làm:
Ta có: Áp dụng bất đẳng thức Bunhiacopxki
=> \(\left(ax+by\right)^2\le\left(a^2+b^2\right)\left(x^2+y^2\right)\) với mọi a,b,x,y là số thực
=> \(A\le B\)
Dấu "=" xảy ra khi: \(a+b=x+y\)
Thay vào ta được: \(2-1=1>\frac{8}{11}-\frac{5}{11}=\frac{3}{11}\)
=> \(A< B\)
Ngứa tay làm bằng Bunhia, có gì sai xót xin thông cảm ạ:)
+) \(A=\left(2.\frac{8}{11}+\left(-1\right).\left(\frac{-5}{11}\right)\right)^2=\left(\frac{16}{11}+\frac{5}{11}\right)^2=\left(\frac{21}{11}\right)^2=\frac{441}{121}\)
+) \(B=\left(2^2+\left(-1\right)^2\right)\left(\frac{8^2}{11^2}+\frac{\left(-5\right)^2}{11^2}\right)\)
\(B=\left(4+1\right)\left(\frac{64+25}{121}\right)=5.\frac{89}{121}=\frac{445}{121}\)
\(a,y_2=kx_2\Rightarrow k=\dfrac{1}{7}:2=\dfrac{1}{14}\\ \Rightarrow y_1=\dfrac{1}{14}x_1\\ \Rightarrow x_1=-\dfrac{3}{4}:\dfrac{1}{14}=-\dfrac{21}{2}\\ b,y_1=kx_1\Rightarrow k=\dfrac{11}{2}:\dfrac{11}{7}=\dfrac{7}{2}\\ \Rightarrow y_2=\dfrac{7}{2}x_2\Rightarrow x_2=-\dfrac{9}{3}:\dfrac{7}{2}=-\dfrac{6}{7}\)
1. a, \(2^{x+2}.3^{x+1}.5^x=10800\)
\(2^x.2^2.3^x.3.5^x=10800\)
\(\Rightarrow\left(2.3.5\right)^x.12=10800\)
\(\Rightarrow30^x=\frac{10800}{12}=900\)
\(\Rightarrow30^x=30^2\)
\(\Rightarrow x=2\)
b,\(3^{x+2}-3^x=24\)
\(\Rightarrow3^x\left(3^2-1\right)=24\)
\(\Rightarrow3^x.8=24\)\(\Rightarrow3^x=3^1\Rightarrow x=1\)
2, c, Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)
Dấu bằng xảy ra khi \(ab\ge0\)
Ta có: \(\left|x-2017\right|=\left|2017-x\right|\)
\(\Rightarrow\left|x-1\right|+\left|2017-x\right|\ge\left|x-1+2017-x\right|\)\(=\left|2016\right|=2016\)
Dấu bằng xảy ra khi \(\left(x-1\right)\left(2017-x\right)\ge0\)\(\Rightarrow2017\ge x\ge1\)
Vậy \(Min_{BT}=2016\)khi \(2017\ge x\ge1\)
d, Áp dụng BĐT \(\left|a\right|-\left|b\right|\le\left|a-b\right|\forall a,b\inℝ\)
Dấu bằng xảy ra khi \(b\left(a-b\right)\ge0\)
Ta có \(B=\left|x-2018\right|-\left|x-2017\right|\le\left|x-2018-x+2017\right|\)
\(\Rightarrow B\le1\)
Dấu bằng xảy ra khi \(\left(x-2017\right)\left[\left(x-2018\right)-\left(x-2017\right)\right]\ge0\)
\(\Rightarrow x\le2017\)
Vậy \(Max_B=1\) khi \(x\le2017\)
để BT \(\frac{5}{\sqrt{2x+1}+2}\) nguyên thì \(\sqrt{2x+1}+2\inƯ\left(5\right)\)
suy ra \(\sqrt{2x+1}+2\in\left\{-5;-1;1;5\right\}\)
\(\Rightarrow\sqrt{2x+1}\in\left\{-7;-3;-1;3\right\}\)
Mà \(\sqrt{2x+1}\ge0\) nên \(\sqrt{2x+1}\)chỉ có thể bằng 3
\(\Rightarrow2x+1=9\Rightarrow x=4\)( thỏa mãn điều kiện \(x\ge-\frac{1}{2}\))
Đây là cách lớp 9. Mk đang phân vân ko biết giải theo cách lớp 7 thế nào!!!!
Tk mình đi mọi người mình bị âm nè!
Ai tk mình mình tk lại cho