K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 12 2021

undefined

15 tháng 12 2021

a) Vì ABCD là hình bình hành nên

AB=CD=2a, AD=BC=a

ta có: M,N là trung điểm của AB và CD

=> DN=1/2CD=a

=> AD=DN

Vậy tam giác ADN cân tại D(đpcm)

=> DAN=DNA

b) Ta có: AB//CD => AND=MAN(So le trong)

=> DAN=MAN

=>AN là tia phân giác của góc BAD

 

24 tháng 6 2018

24 tháng 10 2022

chép mạng :))

13 tháng 11 2017

A B M C N D P Q

a) Do AB = 2a, AD = A nên AB = 2AD.

Lại có ABCD là hình bình hành nên AB = CD. Vậy thì \(DN=\frac{CD}{2}=\frac{AB}{2}=AD\)

Xét tam giác ADN có DA = DN nên ADN là tam giác cân tại D.

Do tam giác ADN cân tại D nên \(\widehat{DAN}=\widehat{DNA}\) 

Do AB//DC nên \(\widehat{BAN}=\widehat{DNA}\) (Hai góc so le trong)

Vậy nên \(\widehat{DAN}=\widehat{BAN}\) hay AN là phân giác góc \(\widehat{BAD}\)

b) Ta có \(MB=\frac{1}{2}AB;DN=\frac{1}{2}DC\Rightarrow\) MB song song và bằng ND.

Xét tứ giác MDNB có MB song song và bằng ND hay MDNB là hình bình hành.

Vậy thì MD // NB

c) Tương tự câu b, ta chứng minh được AMCN là hình bình hành hay AN // MC

Xét tứ giác MPNQ có MP//QN và MQ//PN nên MPNQ là hình bình hành.

Xét tứ giác AMND có AM song song và bằng ND hay AMND là hình bình hành.

Lại có AD = AM nên AMND là hình thoi. Suy ra AN vuông góc DM hay \(\widehat{MPN}=90^o\) .

Xét hình bình hành MPNQ có \(\widehat{MPN}=90^o\) nên MPNQ là hình chữ nhật.

22 tháng 10 2019

toi ko bt

22 tháng 10 2019

https://drive.google.com/file/d/1F7_WT5J17JGrHKXFz0mns6lWgsUhJcNq/view

6 tháng 6

File: undefined chắc các bạn cũng thấy câu a) và b) ạ. Mình làm thử có thiếu sót mong bổ xung ạ.

C) gọi giao điểm của AN và CD là O 

Xét ∆ABN và ∆OCN, ta có:

NC=NB( giả thiết)

NOC = NAB ( góc so le trong)

CNO = BNA ( đối đỉnh )

=> ∆ ABN = ∆OCN ( g-c-g)

=> CO=CA ( cặp cạnh tương ứng bằng nhau)

Mà tứ giác ABCD là hình vuông 

=> AB=CD=CO hoặc CD =CO

Vì ∆APM là tam giác vuông tại P 

=> Gốc DPN =90°

Xét ∆ vuông DPO, ta có ( vì gốc DPN =90° cmt)

Ta có CD=CO ( cmt)

DPO =90°

Trong tam giác vuông đường trung tuyến ứng với cạnh huyền 

=> DC=PC=CO

=> ∆ DPC cân tại C ( vì CP= CD) ( đpcm)

 

a: Xét tứ giác AMCN có

AM//CN

AM=CN

=>AMCN là hình bình hành

Xét tứ giác AMND có

AM//ND

AM=ND

AM=AD

=>AMND là hình thoi

b: AMND là hình thoi

=>I là trung điểm chung của AN và MD và AN vuông góc MD tại N

Xét tứ giác MBCN có

MB//CN

MB=CN

MB=BC

=>MBCN là hình thoi

=>MC vuông góc BN tại K và K là trung điểm chung của MC và BN

Xét ΔMDC có

MN là trung tuyến

MN=DC/2

=>ΔMDC vuông tại M

Xét tứ giác MINK có

góc MIN=góc MKN=góc IMK=90 độ

=>MINK là hình chữ nhật

c: Xét ΔMDC có MI/MD=MK/MC

nên IK//DC