K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 3 2016

Đề này đc trích từ đề thi hsg cấp huyện/quận năm 2014-2015

Các bạn nhớ và ủng họ mình nhé

Thân ái !!!

26 tháng 4 2018

\(a)\) Đặt \(A=\frac{2013}{2014}+\frac{2014}{2015}+\frac{2015}{2013}\) ta có : 

\(A=\frac{2014-1}{2014}+\frac{2015-1}{2015}+\frac{2013+2}{2013}\)

\(A=\frac{2014}{2014}-\frac{1}{2014}+\frac{2015}{2015}-\frac{1}{2015}+\frac{2013}{2013}+\frac{2}{2013}\)

\(A=1-\frac{1}{2014}+1-\frac{1}{2015}+1+\frac{2}{2013}\)

\(A=\left(1+1+1\right)-\left(\frac{1}{2014}+\frac{1}{2015}-\frac{2}{2013}\right)\)

\(A=3-\left[\frac{1}{2014}+\frac{1}{2015}-\left(\frac{1}{2013}+\frac{1}{2013}\right)\right]\)

\(A=3-\left[\frac{1}{2014}+\frac{1}{2015}-\frac{1}{2013}-\frac{1}{2013}\right]\)

\(A=3-\left[\left(\frac{1}{2014}-\frac{1}{2013}\right)+\left(\frac{1}{2015}-\frac{1}{2013}\right)\right]\)

Mà : 

\(\frac{1}{2014}< \frac{1}{2013}\)\(\Rightarrow\)\(\frac{1}{2014}-\frac{1}{2013}< 0\)

\(\frac{1}{2015}< \frac{1}{2013}\)\(\Rightarrow\)\(\frac{1}{2015}-\frac{1}{2013}< 0\)

Từ (1) và (2) suy ra : \(\left(\frac{1}{2014}-\frac{1}{2013}\right)+\left(\frac{1}{2015}-\frac{1}{2013}\right)< 0\) ( cộng theo vế ) 

\(\Rightarrow\)\(-\left[\left(\frac{1}{2014}-\frac{1}{2013}\right)+\left(\frac{1}{2015}-\frac{1}{2013}\right)\right]>0\)

\(\Rightarrow\)\(A=3-\left[\left(\frac{1}{2014}-\frac{1}{2013}\right)+\left(\frac{1}{2015}-\frac{1}{2013}\right)\right]>3\) ( cộng hai vế cho 3 ) 

\(\Rightarrow\)\(A>3\) ( điều phải chứng minh ) 

Vậy \(A>3\)

Chúc đệ học tốt ~ 

26 tháng 4 2018

c, 

\(C=\frac{1}{2}\cdot\frac{3}{4}\cdot\frac{5}{6}\cdot...\cdot\frac{9999}{10000}\)

vì \(\frac{1}{2}< \frac{2}{3}\)

\(\frac{3}{4}< \frac{4}{5}\)

\(\frac{5}{6}< \frac{6}{7}\)

.............................

\(\frac{9999}{10000}< \frac{10000}{10001}\)

nên \(C^2< \frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot...\cdot\frac{10000}{10001}\)

\(\Rightarrow C^2< \frac{1}{10001}< \frac{1}{10000}\)

\(\Rightarrow C< \frac{1}{100}\)

bt lm mỗi một câu :v

,mình sửa lại đề:

\(\frac{2013}{2014}+\frac{2014}{2015}+\frac{2015}{2013}< 3\)

xóa các chữ số ở tử và mẫu: 2014 và 2014,2015 và 2015

=\(\frac{2013}{2013}\)

=\(1\)

vì \(1>3\) nên \(\frac{2013}{2014}+\frac{2014}{2015}+\frac{2015}{2013}>3\)

22 tháng 3 2020

b) Em tham khảo: Câu hỏi của lê chí dũng - Toán lớp 6 - Học toán với OnlineMath

vâng ạ nhưng e cx đg cần câu tl phần a

Ta có :

\(\frac{666665}{333333}< \frac{666666}{333333}=2\text{ hay }\frac{666665}{333333}=2-\frac{1}{333333}\)

Lại có :

\(\frac{2014}{2015}+\frac{2015}{2014}=\left(1-\frac{1}{2015}\right)+\left(1+\frac{1}{2014}\right)\)

\(=\left(1+1\right)+\left(\frac{1}{2014}-\frac{1}{2015}\right)=2-\frac{1}{4058210}\)

Vì \(\frac{1}{333333}>\frac{1}{4058210}\Rightarrow2-\frac{1}{333333}< 2-\frac{1}{4058210}\)

\(\Rightarrow\frac{666665}{333333}< \frac{2014}{2015}+\frac{2015}{2014}\)

Mình nhầm xíu :

Ta có :

\(\frac{666665}{333333}< \frac{666666}{333333}=2\)

Lại có :

\(\frac{2014}{2015}+\frac{2015}{2014}=\left(1-\frac{1}{2015}\right)+\left(1+\frac{1}{2014}\right)\)

\(=\left(1+1\right)+\left(\frac{1}{2014}-\frac{1}{2015}\right)=2+\frac{1}{4058210}>2\)

\(\text{VÌ }\frac{666665}{333333}< 2< \frac{2014}{2015}+\frac{2015}{2014}\)

\(\Rightarrow\frac{666665}{333333}< \frac{2014}{2015}+\frac{2015}{2014}\)

10 tháng 3 2016

TA CÓ

y=1/2.2/3.3/4..............2013/2014.2014/2015

y=(1.2.3...............2014)/(2.3.4..............2015)

y=1/2015

8 tháng 5 2017

NHẤT ĐỊNH SẼ CÓ PHÂN SỐ \(1-\frac{2014}{2014}=0\)

NÊN tích dãy số đó là 0

tk nha

17 tháng 4 2018

100 ngày

12 tháng 4 2016

\(A=\left(-\frac{1}{2}\right).\left(-\frac{2}{3}\right).\left(-\frac{3}{4}\right)......\left(-\frac{2013}{2014}\right)=\left(-\frac{1}{2014}\right)\) (Do các thừa số đều âm và A có (2014-2)+1=2013 thừa số nên A mang giá trị âm)

\(B=-\frac{1}{2015}\)

=> A<B (|A|>|B|)

5 tháng 5 2016
x 7 9 
x2 49 81 
x2-49-0+++
x2-81---0+
A+0-0+

dựa vào bảng ta có khi 7<x<9 thì A<0 vậy 7<x<9

5 tháng 5 2016

b, ta có : \(\frac{2015}{1}\)+\(\frac{2014}{2}\)+\(\frac{2013}{3}\)+......+\(\frac{1}{2015}\)

            =1+1+1+1......+1+\(\frac{2014}{2}\)+\(\frac{2013}{3}\)+.......+\(\frac{1}{2015}\)

                (2015 số 1)

            =1+(1+\(\frac{2014}{2}\))+(1+\(\frac{2013}{3}\))+........+(1+\(\frac{1}{2015}\))

            =\(\frac{2016}{2016}\)+\(\frac{2016}{2}\)+\(\frac{2016}{3}\)+.........+\(\frac{2016}{2015}\)

            =2016(\(\frac{1}{2016}\)+\(\frac{1}{2}\)+\(\frac{1}{3}\)+.........+\(\frac{1}{2015}\))

            =2016(\(\frac{1}{2}\)+\(\frac{1}{3}\)+.......+\(\frac{1}{2015}\)+\(\frac{1}{2016}\))vậy x= 2016