Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: x(x+y+z) = 4
y(x+y+z) = 6
z(x+y+z) = 6
Cộng vế theo vế, ta được (x+y+z)2 = 16 => x+y+z = 4 hoặc -4
Ta có 2 trường hợp sau:
TH 1: x+y+z = 4
Mà x(x+y+z) = 4 => x = 1
y(x+y+z) = 6 => y = 6/4 = 3/2
=> z = 3/2
TH 2: x+y+z = -4
Mà x(x+y+z) = -4 => x = -1
y(x+y+z) = 6 => y = -6/4=-3/2
=> z = -3/2
Vậy ta có tất cả là 2 cặp số hữu tỉ thỏa mãn đầu bài
\(x=7;y=9;z=12\)
\(2^x+2^y+2^z=4736\\ \Rightarrow2^x\left(1+2^{y-x}+2^{z-x}\right)=4736\)
Ta có \(0< x< y< z\Rightarrow y-z>0;x-z>0\)
\(\Rightarrow1+2^{y-x}+2^{z-x}\) lẻ
\(\Rightarrow4736=2^7\cdot37=2^x\left(1+2^{y-x}+2^{z-x}\right)\\ \Rightarrow\left\{{}\begin{matrix}x=7\\2^{y-x}+2^{z-x}+1=37\left(1\right)\end{matrix}\right.\\ \Rightarrow2^{y-7}+2^{z-7}=36\\ \Rightarrow2^{y-7}\left(1+2^{z-y}\right)=36=2^2\cdot3^2\)
Mà \(0< y< z\Rightarrow z-y>0\Rightarrow1+2^{z-y}\) lẻ
\(\Rightarrow\left\{{}\begin{matrix}y-7=2\\1+2^{z-y}=3^2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}y=9\\2^{z-9}=8=2^3\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}y=9\\z=12\end{matrix}\right.\)
Vậy \(\left(x;y;z\right)=\left(7;9;12\right)\)
Bạn tham khảo của mình nhé