Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)nếu 200910+9=200919
vậy 200919>201010suy ra A>B
nếu 36:32=4 và 47:43 =47-3=44
vậy 4<44 suy ra A<B
chúc bn
hok tốt
\(\hept{\begin{cases}3^{2n}=9^n\\2^{3n}=8^n\end{cases}}\)
nếu n=0\(\Rightarrow\hept{\begin{cases}9^n=9^0=1\\8^n=8^0=1\end{cases}\Rightarrow9^n=8^n}\)
nếu n>0\(\Rightarrow9^n>8^n\)
vậy \(3^{2n}\ge2^{3n}\)
a) 40 và 60
Ta có Ư(40)\(\in\){1;2;4;5;6;8;10;16;20}
Ư(60)\(\in\){1;2;3;4;5;6;10;12;15;20;30)
ƯC(40;60)\(\in\){1;2;3;4;5;6;10;20}
Trong đó,20 là ƯCLN.Vậy ƯCLN(40;60)\(\in\){20}
b)
Vì nó bé hơn thì nó bé hơn
░░░░▄▄▄▄▀▀▀▀▀▀▀▀▄▄▄▄▄▄
░░░░█░░░░▒▒▒▒▒▒▒▒▒▒▒▒░░▀▀▄
░░░█░░░▒▒▒▒▒▒░░░░░░░░▒▒▒░░█
░░█░░░░░░▄██▀▄▄░░░░░▄▄▄░░░█
░▀▒▄▄▄▒░█▀▀▀▀▄▄█░░░██▄▄█░░░█
█▒█▒▄░▀▄▄▄▀░░░░░░░░█░░░▒▒▒▒▒█
█▒█░█▀▄▄░░░░░█▀░░░░▀▄░░▄▀▀▀▄▒█
░█▀▄░█▄░█▀▄▄░▀░▀▀░▄▄▀░░░░█░░█
░░█░░▀▄▀█▄▄░█▀▀▀▄▄▄▄▀▀█▀██░█
░░░█░░██░░▀█▄▄▄█▄▄█▄████░█
░░░░█░░░▀▀▄░█░░░█░███████░█
░░░░░▀▄░░░▀▀▄▄▄█▄█▄█▄█▄▀░░█
░░░░░░░▀▄▄░▒▒▒▒░░░░░░░░░░█
░░░░░░░░░░▀▀▄▄░▒▒▒▒▒▒▒▒▒▒░█
░░░░░░░░░░░░░░▀▄▄▄▄▄░░░░░█
\(5^{120}=\left(5^2\right)^{60}=25^{60}\)
\(3^{183}=\left(3^3\right)^{61}=27^{61}\)
\(27^{61}>27^{60}>25^{60}\Rightarrow3^{183}>5^{120}\)
5120=(52)60=2560
3183=(33)61=2761
2560<2761=>5120<2761
+ Quy đồng mẫu các phân số: \(\dfrac{3}{4}\) và \(\dfrac{5}{6}\):
\(BCNN\left( {6,4} \right) = 12\)
Thừa số phụ: \(12:4 = 3; 12:6=2\)
Ta có: \(\dfrac{3}{4} = \dfrac{{3.3}}{{4.3}} = \dfrac{9}{{12}}\\\dfrac{5}{6} = \dfrac{{5.2}}{{6.2}} = \dfrac{{10}}{{12}}\)
+ So sánh hai phân số cùng mẫu:
Vì 9 < 10 nên \(\dfrac{9}{{12}} < \dfrac{{10}}{{12}}\) nên \(\dfrac{3}{4} < \dfrac{5}{6}\).
Gọi hai phân số cần tìm là a/b và c/d
Ta có : a/b : c/d = 10/21
a/b x d/c = 10/21
=> a x d = 10k và b x c = 21k ( k e N*)
Thử chọn ta có k = { 1, 2, 3 }
Nếu k = 1
thì a x d = 10 mà 10 = 2 x 5
b x c = 21 mà 21 = 3 x 7
=> ( a/b ; c/d ) = 2/3 và 7/5, 2/7 và 3/5, 5/3 và 7/2, 5/7 và 3/2
Tương tự bạn hãy thử chọn k = 2 và 3 để tìm ra a/b với c/d nhé
Anh cũng nằm trong đội tuyển nàk em tham khảo nhé
Ta có :
\(A=\frac{10^{11}-1}{10^{12}-1}\)
\(\Leftrightarrow\)\(10A=\frac{10^{12}-10}{10^{12}-1}=\frac{10^{12}-1}{10^{12}-1}-\frac{9}{10^{12}-1}=1-\frac{9}{10^{12}-1}< 1\)\(\left(1\right)\)
Lại có :
\(B=\frac{10^{10}+1}{10^{11}+1}\)
\(\Leftrightarrow\)\(10B=\frac{10^{11}+10}{10^{11}+1}=\frac{10^{11}+1}{10^{11}+1}+\frac{9}{10^{11}+1}=1+\frac{9}{10^{11}+1}>1\)\(\left(2\right)\)
Từ (1) và (2) suy ra \(10A< 1< 10B\) hay \(A< B\)
Vậy \(A< B\)
10A=\(\frac{10^{12}-10}{10^{12}-1}\)=\(1-\frac{9}{10^{12}-1}\)
10B=\(\frac{10^{11}+10}{10^{11}+1}=1+\frac{9}{10^{11}+1}\)
Sao sánh 10A với 10B
Vì 1=1 nên so sánh \(-\frac{9}{10^{12}-1}\)với \(\frac{9}{10^{11}+1}\)
=> \(-\frac{9}{10^{12}-1}< \frac{9}{10^{11}+1}\)
=> 10A < 10B
=> A < B
\(9^{35}=\left(3^2\right)^{35}=3^{70}\)
VÌ \(3^{60}< 3^{70}\)
NÊN \(3^{60}< 9^{35}\)
Ta có :
\(9^{35}=\left(3^2\right)^{35}=3^{70}\)
Vì \(3^{60}< 3^{70}\Rightarrow3^{60}< 9^{35}\)
Vậy\(3^{60}< 9^{35}\)