Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Làm từng phần thôi dài quá
Bài 1 :
Gọi số tự nhiên đầu tiên tiên là a
=> a + a + 1 + a + 2 + a + 3 + a + 4 + a + 5
= 6a + 15
mà 6a chia hết cho 6; 15 ko chia hết cho 6 => tổng đó KO chia hết
Bài 2 :
Ta thấy : 3^2018 có tận cùng là 1 số lẻ
11^2017 cũng có tận cùng là một số lẻ
=> 3^2018 - 11^2017 là một số chẵn => 3^2018 - 11^2017 chia hết cho 2
bài 1 ko
bài 2
ta có \(\hept{\begin{cases}3^{2018}=3^{2016}.3^2=\left(3^4\right)^{504}.9=81^{504}.9=\cdot\cdot\cdot1.9=\cdot\cdot\cdot9\\11^{2017}=\cdot\cdot\cdot1\end{cases}}\)
\(\Rightarrow3^{2018}-11^{2017}=\cdot\cdot\cdot9-\cdot\cdot\cdot1=\cdot\cdot\cdot8⋮2\left(ĐPCM\right)\)
bài 3
a)
\(n+4⋮n\Rightarrow4⋮n\Rightarrow n\inƯ\left(\text{4}\right)\)
\(\Rightarrow n\in\left\{1;2;4;-1;-2;-4\right\}\)
b)
\(3n+7⋮n\Rightarrow7⋮n\Rightarrow n\inƯ\left(7\right)\)
\(\Rightarrow n\in\left\{1;7;-1;-7\right\}\)
Bài 1:
Tổng của 6 STN liên tiếp coi là:
\(a+\left(a+1\right)+\left(a+2\right)+\left(a+3\right)+\left(a+4\right)+\left(a+5\right)\)
\(=6a+15⋮̸6\)
KL: Tổng của 6 STN liên tiếp không chia hết cho 6.
Bài 2:
\(3\equiv1\left(mod2\right)\Rightarrow3^{2018}\equiv1\left(mod2\right)\)( 1 )
\(11\equiv1\left(mod\right)2\Rightarrow11^{2017}\equiv1\left(mod2\right)\)( 2 )
Từ ( 1 ) và ( 2 ) => \(3^{2018}-11^{2017}\equiv1-1=0\left(mod2\right).\)
KL; đpcm.
Bài 3 :
a) \(n+4⋮n\Rightarrow4⋮n\Leftrightarrow n\inƯ\left(4\right)=\left\{-4;-2;-1;1;2;4\right\}.\)
KL: ...
b) \(3n+7⋮n\Rightarrow7⋮n\Leftrightarrow n\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}.\)
KL: ...
bài 4 : a. 2002 ^2003 = 2002 ^2000 . 2002^3=(2002^4).^500 . 2002^3
=(...6).(...8)=..8
2003^2004=(2003^4)^501 = ...1
2002^2003 + 2003^2004=...1+...8 =..9 ko chia hết cho 2
b.3^4n -6 =(...1) - (..6) = ...5 chia hết cho 5
c.2001^2002-1=(...1).(..1) =...0 chia hết cho 10
nếu đúng nhớ tick cho mình nhé
\(A=2+2^2+2^3+2^4+2^5+...+2^{60}\)
\(=(2+2^2)+(2^3+2^4)+(2^5+2^6)+...+(2^{59}+2^{60})\)
\(=2(1+2)+2^3(1+2)+2^5(1+2)+...+2^{59}(1+2)\)
\(=2.3+2^3.3+2^5.3+...+2^{59}.3\)
\(=(2+2^3+2^5+...+2^{59}).3\)chia hết cho 3
Vậy \(A=2+2^2+2^3+2^4+2^5+...+2^{60}\)xhia hết cho 3
A = 2 + 22 + 23 + 24 + 25 + ..........+260
A = ( 2 + 22 + 23 ) + ..........+ ( 2 58+ 259 + 260 )
A = 2 ( 1+ 2 ) + 22 + ..............+ 258 ( 1 + 2 ) + 22
A = 2 x 3 + 4 + ................+ 258 x 3 + 4
Vì 3 chia hết cho 3 nên
A = 2 x 3 + 4 + ................+ 258 x 3 + 4 sẽ chia hết cho 3
n³ + 3n² + 2n = n²(n + 1) + 2n(n + 1) = n(n + 1)(n + 2)
số chia hết cho 6 là số chia hết cho 2 và 3
mà (n + 1) chia hết cho 2 và 3 với mọi số nguyên n
(n + 2) chia hết cho 2 và 3 với mọi số nguyên n
=>n³ + 3n² + 2n luôn chia hết cho 6 với mọi số nguyên n
Hello