K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 11 2015

bài 4 : a. 2002 ^2003 = 2002 ^2000 . 2002^3=(2002^4).^500 . 2002^3

=(...6).(...8)=..8

2003^2004=(2003^4)^501 = ...1

2002^2003 + 2003^2004=...1+...8 =..9 ko chia hết cho 2

b.3^4n -6 =(...1) - (..6) = ...5 chia hết cho 5

c.2001^2002-1=(...1).(..1) =...0 chia hết cho 10 

nếu đúng nhớ tick cho mình nhé

Bài 1: a) Thay * bằng các chữ số nào để đc số 589* chia hết cho cả 2 và 3b) Thay * bằng các chữ số nào để đc số 792* chia hết cho cả 3 và 5Bài 2: Cho A = 10 + 25 + x + 45 với x ∈ N. Tìm điều kiện của x để A chia hết cho 5 và A không chia hết cho 5Bài 3: 1) Cho S = 5 + 52 + 53 + ........... + 52006.a) Tính Sb) Chứng minh S chia hết cho 262) Cho C = 3 + 32 + 33 + ........... + 3100. Chứng minh C chia hết cho...
Đọc tiếp

Bài 1: 

a) Thay * bằng các chữ số nào để đc số 589* chia hết cho cả 2 và 3

b) Thay * bằng các chữ số nào để đc số 792* chia hết cho cả 3 và 5

Bài 2: Cho A = 10 + 25 + x + 45 với x  N. Tìm điều kiện của x để A chia hết cho 5 và A không chia hết cho 5

Bài 3: 1) Cho S = 5 + 5+ 53 + ........... + 52006.

a) Tính S

b) Chứng minh S chia hết cho 26

2) Cho C = 3 + 3+ 33 + ........... + 3100. Chứng minh C chia hết cho 40

3) Cho A = 2 + 2+ 23 + ........... + 260. Chứng minh C chia hết cho 7

Bài 4: Xét xem:

a) 20022003 + 20032004  có chia hết cho 2 không?

b) 34n - 6 có chia hết cho 5 không? ( n ∈‍ N* )

c) 20012002 - 1 có chia hết cho 10 không?


Ai giải rõ ràng mình tick!!

Giải bài nào cũng đc nha!!

Bài 1 nhớ bày cách giải dùm nha! thanks ( biết kết quả mà chả biết cách làm )

0
16 tháng 10 2019

 DẤU CHIA HẾT NÈ BN:  ⋮

16 tháng 10 2019

Đào Ngọc Mai ơi, ấn ở đâu vậy, chỉ mình với

16 tháng 12 2018

bài 8

c) chứng minh \(\overline{aaa}⋮37\)

ta có: \(aaa=a\cdot111\)

\(=a\cdot37\cdot3⋮37\)

\(\Rightarrow aaa⋮37\)

k mk nha

k mk nha.

#mon

16 tháng 12 2018

Trả lời 1 bài cũng đc

13 tháng 10 2018

a) \(1+2+...+2^{2011}\)

\(=2^0+2+...+2^{2010}+2^{2011}\)

\(=2^0\left(1+2\right)+...+2^{2010}\left(1+2\right)\)

\(=2^0\cdot3+...+2^{2010}\cdot3\)

\(=3\left(2^0+...+2^{2010}\right)⋮3\left(đpcm\right)\)

Các câu còn lại tương tự, dài quá

13 tháng 10 2018

a) Dãy trên có : 2012 lũy thừa và 2012 \(⋮\)2 =< có thể ghpes thành các nhóm, mỗi nhóm 2 lũy thừa.

 Ta có : 

  A  = ( 1 + 2 ) + ( 22 + 23 ) + ...+( 22010 +  22011 )

=> A = 3 + 22 . ( 1 + 2 ) +...+ 22010. ( 1 + 2 )

=> A = 3 . ( 1 + 22 +...+ 22010 ) => A chia hết cho 3

-  Để chứng minh chia hết cho 5 thì ghép 4 cái liền. ( làm tương tự trên )

b, 

Ta có : 

 B = 1 + 7 +...+ 7101

=> B = ( 1 + 72 ) + ( 7 + 73 ) +...+ ( 799 + 7101 )

=> B = 50 + 72.( 1 + 72 ) +...+ 799. ( 1 + 72 )

=> B = 50 + 72.50 +...+799.50

=> B = 50.( 1 + 7+...+ 799 ) => B chia hết cho 50

Dưới tương tự...

3 tháng 1 2016

thu vien cua trường có khoảng trên 2000 bản sach. nếu xếp 100 bản vào một tủ thì thừa 12 bản, nếu xếp 120 bản vào tủ thì thiếu 108 bản. nếu xếp 150 bản vào một tủ thì thiếu 138 bản. hỏi thu viện có bao nhiêu bản sách?  ai giải hộ với

 

3 tháng 1 2016

đưa lên câu hỏi người ta làm gì zay

bài khó quá mà mk lại ngu toán ............. nên ko lm đc bài này ,xl cậu nhoa

9 tháng 9 2016

a) Do: 2002 chia hết cho 2 và số tận cùng của lũy thừa có cơ số là 2002 là 2 ; 4 ; 8 ; 6 => 20022003 cũng chia hết cho 2    (1)

Do: 2003 không chia hết cho 2  và số tận cùng của lũy thừa cơ số 2003 là 3 ; 9; 7 ; 1=> 20032004 không chia hết cho 2     (2)

Từ (1) và (2) ta được: 20022003 + 20032004 không chia hết cho 2

b) 34n - 6 = (34)n - 6 = 81n - 6 

Do: Lũy thừa có cơ số là 81 thì có tận cùng là 1  => 81n đồng dư với 1 (mod 5) đồng thời 6 đồng dư với 1 (mod 5)

=>81n - 6 đồng dư với 1 - 1(mod 5) <=> 81n - 6 đồng dư với 0 (mod 5)

=> 81n - 6 chia hết cho 5  => 34n - 6 chia hết cho 5 

c) 20012002 có tận cùng là 1  => 20012002 đồng dư với 1 (mod 10)

=> 20012002 - 1 đồng dư với 1 - 1 (mod 10)  => 20012002 - 1 đồng dư với 0 (mod 10)

=> 20012002 - 1 chia hết cho 10