Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(2^3\cdot9^4+9^3+45\right):\left(9^2\cdot10-9^2\right)\)
\(=\dfrac{9^3\cdot\left(2^3\cdot9+1\right)+45}{9^3}\)
\(=\dfrac{9^3\cdot73+45}{9^3}=\dfrac{5918}{81}\)
a) Xét \(\Delta BAD\) và \(\Delta BCE:\)
\(\widehat{B}chung.\)
\(\widehat{D}=\widehat{E}\left(=90^o\right).\)
\(\Rightarrow\Delta BAD\sim\Delta BCE\left(g-g\right).\)
b) Xét \(\Delta ABC:\)
CE là đường cao \(\left(CE\perp AB\right).\)
AD là đường cao \(\left(AD\perp BC\right).\)
Mà F là giao điểm của CE và AD.
\(\Rightarrow BF\) là đường cao.
Xét \(\Delta ABC\) cân tại B:
BF là đường cao (gt).
\(\Rightarrow BF\) là phân giác \(\widehat{ABC}.\)
\(Pytago:\)
\(AB=\sqrt{AH^2+BH^2}=\sqrt{12^2+9^2}=15\left(cm\right)\)
\(CH=\sqrt{AC^2-AH^2}=\sqrt{20^2-12^2}=16\left(cm\right)\)
=> C
Theo đề ta có:
7 + 9 + 7 + 8 + x + y = 50
x + y = 50 - 7 - 9 - 7 - 8 = 19
x + x + 1 = 19 (vì x < y và x và y là hai số tự nhiên liên tiếp)
2x = x + x = 19 - 1 = 18
x = 18 : 2 = 9, suy ra y = 9 + 1 = 10
Vậy xác suất thực nghiệm của sự kiện: "Gieo được mặt 6 chấm trong 50 lần giao trên) là 10 : 50 = 0,2
Do \(\widehat{O_1}\) và \(\widehat{O_3}\) là 2 góc đối đỉnh
\(\Rightarrow\widehat{O_1}=\widehat{O_3}=\dfrac{130^o}{2}=65^o\\ \Rightarrow\widehat{O_2}=\widehat{O_4}=180^o-65^o=115^o\)
Bài 3:
a: Ta có: f(0)=4 và f(1)=0
\(\Leftrightarrow\left\{{}\begin{matrix}0^2-a\cdot0+b=4\\1^2+a\cdot1+b=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=4\\b+a=-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}b=4\\a=-1-b=-5\end{matrix}\right.\)
b: Ta có: \(f\left(-1\right)=0\) và f(2)=0
\(\Leftrightarrow\left\{{}\begin{matrix}\left(-1\right)^2-a\cdot\left(-1\right)+b=0\\2^2-2a+b=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a+b=-1\\-2a+b=-4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3a=3\\a+b=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=-1-a=-2\end{matrix}\right.\)
Bn có thể giải các bc ra đc ko bn lm tắt mik khum hỉu j hế
CẢM ƠN BN RẤT NHIỀU.