Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3.
\(\left\{{}\begin{matrix}a\left(a+b+c\right)=-\dfrac{1}{24}\left(1\right)\\c\left(a+b+c\right)=-\dfrac{1}{72}\left(2\right)\\b\left(a+b+c\right)=\dfrac{1}{16}\left(3\right)\end{matrix}\right.\)
Dễ thấy \(a,b,c\ne0\Rightarrow a+b+c\ne0\)
Chia (1) cho (2), ta được \(\dfrac{a}{c}=3\Rightarrow a=3c\left(4\right)\)
Chia (2) cho (3) ta được: \(\dfrac{c}{b}=-\dfrac{2}{9}\Rightarrow b=-\dfrac{9}{2}c\left(5\right)\).
Thay (4), (5) vào (2), ta được: \(-\dfrac{1}{2}c^2=-\dfrac{1}{72}\)
\(\Rightarrow c=\pm\dfrac{1}{6}\).
Với \(c=\dfrac{1}{6}\Rightarrow\left\{{}\begin{matrix}a=3c=\dfrac{1}{2}\\b=-\dfrac{9}{2}c=-\dfrac{3}{4}\end{matrix}\right.\)
Với \(c=-\dfrac{1}{6}\Rightarrow\left\{{}\begin{matrix}a=3c=-\dfrac{1}{2}\\b=-\dfrac{9}{2}c=\dfrac{3}{4}\end{matrix}\right.\)
Vậy: \(\left(a;b;c\right)=\left\{\left(\dfrac{1}{2};-\dfrac{3}{4};\dfrac{1}{6}\right);\left(-\dfrac{1}{2};\dfrac{3}{4};-\dfrac{1}{6}\right)\right\}\)
Vì abcde . 9 = edcba (gt)
=> a = 1 và e = 9
=> 1bcd9 . 9 = 9dcb1
=> ( 10009 + 10bcd ) . 9 = 90001 + 10dcb
=> 10009 . 9 + 10bcd . 9 = 90001 + 10dcb
=> 90081 + 90bcd = 90001 + 10dcb
=> 80 + 90bcd = 10dcb ( Trừ cả hai vế cho 90001 )
=> 10 ( 8 + 9bcd ) = 10dcb
=> 8 + 9bcd = dcb
=> b = 1 hoặc b = 0 ( Loại b = 1 )
=> b = 0
=> d = 8
=> 10c89 . 98c01
Xét \(98001\le10c89\times9=98c01\le98901\)
\(10899\le10c89\le10989\)
Mà \(10889\times9=98001\)
\(10989\times9=98901\)
=> abcde = 10989
Vậy a = 1 ; b = 0 ; c = 9 ; d = 8 ; e = 9
đáp án là 10989
còn lại bạn tính đi nha
xin lỗi bài này mk giải ra dài lắm nên ko gõ ra hết được
thành thật xin lỗi bạn
Gọi số cần tìm là abcde
=> a.b.c.d.e.45 = abcde
VT chia hết cho 5 => VP chia hết cho 5 => e=5
a.b.c.d.5.45=abcd5
VT chia hết cho 25 => VP chia hết 25 => de=25 hoặc 75
*de=25 => a.b.c.2.5.45=abc25 => Vô lý vì VT tận cùng là 0
=> de=75
Ta có: a.b.c.7.5.45=abc75
a.b.c<999757.5.45) = 63 (*)
Mặt khác ta có abc75=a.b.c.7.5.45
=> 100.abc= a.b.c.7.5.45-75
VP chia hết cho 75 => VT cũng chia hết cho 75
100 chia hết 25 => abc chia hết cho 3 => a+b+c chia hết cho 3 (**)
a,b,c không thể có số chẵn vì nếu có 1 số chẵn thì tích a.b.c.d.e=0
=> (a,b,c) = (1,3,5,7,9) (***)
Từ (*) (**) và (***) ta suy ra (a,b,c) có thể là 1 trong 3 nhóm sau
(1,5,9), (1,3,5), (1,7,7)
Thay lần lượt 3 nhóm kia vào, ta thấy nhóm (1,7,7) là thỏa mãn
=> abcde= 1.7.7.7.5.45 = 77175