- Phát biểu định nghĩa và tính chất tam giác cân. Nêu các cách chứng minh • các dụng
m giác là tam giác cân.
(5) Phát biểu định nghĩa và tính chất tam giác đều. Nêu các cách chứng minh tam giác là tam giác đều.
(6) Phát biểu định lí Py-ta-go thuận và đảo. b) Trả lời các câu hỏi sau
(1) Thế nào là hai tam giác bằng nhau? đến đo (2) Thế nào là tam giác cân?
(3) Thế nào là tam giác vuông cân? (4) Thế nào là tam giác đều? (5) Nêu các tính chất của tam giác cân. (6) Nêu các tính chất của tam giác vuông cân. (7) Nêu các tính chất của tam giác đều. c) Đố bạn nêu chính xác các tính chất sau: (1) Nếu ba cạnh của tam giác này .... tam giác kia, thì hai tam giác đó bằng
(2) Nếu hai cạnh và góc xen giữa của tam giác này .... tam giác kia, thì giác đó bằng nhau.
(3) Nếu một cạnh và hai góc kề của tam giác này .... tam giác kia, thì hai ta đó bằng nhau.
(4) Nếu một cạnh góc vuông và một góc nhọn kề cạnh ấy của tam giác vụ .... tam giác vuông kia, thì hai tam giác đó bằng nhau.
(5) Nếu cạnh huyền và một góc nhọn của tam giác vuông này .... tam giá kia, thì hai tam giác đó bằng nhau. | (6) Nếu hai cạnh góc vuông của tam giác vuông này .... tam giác vuông ki tam giác đó bằng nhau.
6 tính chất tam giác vuông cân
(7) Nếu cạnh huyền và một cạnh góc vuông của tam giác vuông này .... vuông kia, thì hai tam giác đó bằng nhau.
(8) Trong một tam giác vuông, bình phương của cạnh huyền bằng... cạnh g (9) Nếu một tam giác có bình phương của một cạnh bằng... đó là tam gi
cạnh huyền^2=a^2+a^2
Tam giác ABC vuông tại A
=>AB=AC ( 2 cạnh góc vuông của tam giác vuông cân)
BC là cạnh huyền
=> BC^2=AB^2+BC^2=2AB^2 (do AB=BC)
=2a^2
=> BC= \(\sqrt{2}a\)