Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
thay x=2014 vào ta có:
f(2014)=20142014-2015.20142013+2015.20142012-2015.20142011+...-2015.2014+2015
=20142014-(2014+1)20142013+(2014+1).20142012-(2014+1).20142011+...-(2014+1).2014+2014+1
=20142014-20142014-20142013+20142013+20142012-20142012-20142011+...-20142-2014+2014+1
=1
với x=2014
=> f(x)=x2014-(x+1)x2013+(x+1)x2012-...-(x+1)x+(x+1)
=x2014-x2014-x2013+x2013+x2012-...-x2-x+x+1
=1
=> \(f\left(x\right)=x^{2014}-\left(2014+1\right)x^{2013}+\left(2014+1\right)x^{2012}+...-\left(2014+1\right)x+2014+1\)
Mà x = 2014
=> \(f\left(2014\right)=x^{2014}-\left(x+1\right)x^{2013}+\left(x+1\right)^{2012}+...-\left(x+1\right)x+x+1\)
\(=x^{2014}-x^{2014}+x^{2013}-x^{2013}-x^{2012}+....-x^2-x+x+1\)
\(=1\)
=> f(2014) = 1
x = 2014 => x + 1 = 2015
=> f(2014) = x2014 - (x + 1).x2013 + (x + 1).x2012 - ... - (x + 1).x + x + 1
= x2014 - x2014 - x2013 + x2013 + x2012 - ... - x2 - x + x + 1
= 1
minh moi hoc lop 5