K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 3 2020

\(a^2+ab+\frac{b^2}{3}=25\Rightarrow\frac{a^2+ab+\frac{b^2}{3}}{25}=1 \)

Tương tự :\(\frac{c^2+\frac{b^2}{3}}{9}=1;\frac{a^2+ac+c^2}{16}=1\)

Áp dụng t/c dãy tỉ số bằng nhau , ta có

\(\frac{c^2+\frac{b^2}{3}}{9}=\frac{a^2+ac+c^2}{16}=\frac{2c^2+ac+\frac{b^2}{3}+a^2}{25}\)

\(\Rightarrow\frac{a^2+ab+\frac{b^2}{3}}{25}=\frac{2c^2+ac+a^2+\frac{b^2}{3}}{25}\Rightarrow a^2+ab+\frac{b^2}{3}=2c^2+ac+a^2+\frac{b^2}{3}\)

\(\Rightarrow ab=2c^2+ac\\ \Rightarrow ab+ac=2c^2+2ac\\ \Rightarrow a\left(b+c\right)=2c\left(a+c\right)\\ \Rightarrow\frac{2c}{a}=\frac{b+c}{a+c}\)

26 tháng 11 2023

a2+ab+b23=25⇒a2+ab+b2325=1�2+��+�23=25⇒�2+��+�2325=1

Tương tự :c2+b239=1;a2+ac+c216=1�2+�239=1;�2+��+�216=1

Áp dụng t/c dãy tỉ số bằng nhau , ta có

c2+b239=a2+ac+c216=2c2+ac+b23+a225�2+�239=�2+��+�216=2�2+��+�23+�225

⇒a2+ab+b2325=2c2+ac+a2+b2325⇒a2+ab+b23=2c2+ac+a2+b23⇒�2+��+�2325=2�2+��+�2+�2325⇒�2+��+�23=2�2+��+�2+�23

⇒ab=2c2+ac⇒ab+ac=2c2+2ac⇒a(b+c)=2c(a+c)⇒2ca=b+ca+c

18 tháng 4 2021

Ta có:\(\dfrac{x^2}{4}=\dfrac{x}{2};\dfrac{y^2}{9}=\dfrac{y}{3};\dfrac{z^2}{25}=\dfrac{z}{5}\)

Aps dụng tính chất dãy tỉ số bằn nhau:

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{x-y+z}{2-3+5}=\dfrac{4}{4}=1\)

=>\(\dfrac{x}{2}=1=>x=2\)

  \(\dfrac{y}{3}=1=>y=3\)

\(\dfrac{z}{5}=1=>z=5\)

Vậy x=2, y=3, z=5

18 tháng 4 2021

Ta có : \(\dfrac{x^2}{4}=\dfrac{y^2}{9}=\dfrac{z^2}{25}\Rightarrow\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được : 

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{x-y+z}{2-3+5}=\dfrac{4}{4}=1\)

\(\Leftrightarrow x=2;y=3;z=5\)

4 tháng 10 2019

vì -1 hơn 1 hai số cho nên;

a) a/b và c/d ^2 =ab/cd hơn kém nhau 2

b) dựa theo tính chất kết hợp (a+b/c+d ) ^3 = a ^3 ...

9 tháng 2 2020

\(a^2+ab+\frac{b^2}{3}=c^2+\frac{b^2}{3}+a^2+ac+c^2\left(=25\right)\)

\(\Rightarrow a^2+ab+\frac{b^2}{3}=2c^2+\frac{b^2}{3}+a^2+ac\\ \Rightarrow ab=2c^2+ac\\ \Rightarrow ab+ac=2c^2+2ac\\ \Rightarrow a\left(b+c\right)=2c\left(a+c\right)\\ \Rightarrow\frac{2c}{a}=\frac{b+c}{a+c}\)