K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
2T
12 tháng 8 2019
\(\hept{\begin{cases}a^2+ab+\frac{b^2}{3}=25\\c^2+\frac{b^2}{3}=9\end{cases}}\Rightarrow a^2+ac-c^2=16\)
\(\Rightarrow a^2+ab-c^2=a^2+ac+c^2\left(=16\right)\)
\(\Rightarrow ab-c^2=ac+c^2\)
\(\Rightarrow ab=ac+2c^2\)
\(\Rightarrow ab+ac=2ac+2c^2\)
\(\Leftrightarrow a\left(b+c\right)=2c\left(a+c\right)\)
\(\Leftrightarrow\frac{2c}{a}=\frac{b+c}{a+c}\left(đpcm\right)\)
8 tháng 8 2017
\(\left\{{}\begin{matrix}a^2+ab+\dfrac{b^2}{3}=25\\c^2+\dfrac{b^2}{3}=9\\a^2+ac+c^2=16\end{matrix}\right.\)
\(\Rightarrow a^2+ab+\dfrac{b^2}{3}=c^2+\dfrac{b^2}{3}+a^2+ac+c^2\)
\(\Rightarrow ab=2c^2+ac\)
Biến đổi 1 chút là ra
\(\rightarrowđpcm\)
Có \(a^2+ab+\frac{b^2}{3}=c^2+\frac{b^2}{3}+a^2+ac+c^2\left(=25\right)\)
\(\Rightarrow a^2+ab+\frac{b^2}{3}=2c^2+\frac{b^2}{3}+a^2+ac\\ \Rightarrow ab=2c^2+ac\\ \Rightarrow ab+ac=2c^2+2ac\\ \Rightarrow a\left(b+c\right)=2c\left(a+c\right)\\ \Rightarrow\frac{2c}{a}=\frac{b+c}{a+c}\)