K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 2 2018

Ta có : 

\(\frac{21^2.14.125}{35^3.6}=\frac{3^2.7^2.2.7.5^3}{5^3.7^3.2.3}=\frac{2.3^2.5^3.7^3}{2.3.5^3.7^3}=\frac{3}{1}=3\)

Vậy \(\frac{21^2.14.125}{35^3.6}=3\)

23 tháng 2 2018

\(\frac{21^2.14.125}{35^3.6}\)\(\frac{21^2.2.7.125}{42875.2.3}\)\(\frac{21^2.7.125}{125.343.3}\)\(\frac{21^2.7.125}{125.7.49.3}\)\(\frac{21^2}{49.3}\)\(\frac{441}{147}\)

Mình làm rồi nhưng bạn thử tính lại cho chắc nha

Chúc bạn học tốt!

`@` `\text {Ans}`

`\downarrow`

\(\dfrac{21^2\cdot14\cdot125}{35^2\cdot125}\)

`=`\(\dfrac{3^2\cdot7^2\cdot2\cdot7\cdot5^2}{5^2\cdot7^2\cdot5^2}\)

`=`\(\dfrac{3^2\cdot2\cdot7\cdot5^2\cdot7^2}{5^2\cdot5^2\cdot7^2}\)

`=`\(\dfrac{3^2\cdot2\cdot7}{5^2}=\dfrac{126}{25}\)

9 tháng 3 2018

các bn lm đến đâu cx dc miễn là lm hộ mk cái ạ, ai đang lm vào nhắn tin vs mk để mk bít nha

19 tháng 2

a; \(-\dfrac{8}{3}+\dfrac{7}{5}-\dfrac{71}{15}< x< -\dfrac{13}{7}+\dfrac{19}{14}-\dfrac{7}{2}\)

              -\(\dfrac{19}{15}\) - \(\dfrac{71}{15}\) < \(x\) < -\(\dfrac{1}{2}\) - \(\dfrac{7}{2}\)

              -6 < \(x\) < -4

             vì \(x\) \(\in\) Z nên \(x\) = -5

30 tháng 10 2018

\(A=\frac{4^6.3^4.9^5}{6^{12}}=\frac{\left(2^2\right)^6.3^3.\left(3^2\right)^5}{6^{12}}\)

\(=\frac{2^{12}.3^3.3^{10}}{6^{12}}=3^{13}.3^{12}=3^{25}\)

30 tháng 10 2018

\(A=\frac{4^6.3^4.9^5}{6^{12}}\)

\(A=\frac{2^6.2^6.3^4.3^5.3^5}{2^{12}.3^{12}}\)

\(A=\frac{3^3.3^5}{1}\)

\(A=3^8\)
 

\(B=\frac{21^2.14.125}{35^3.6}\)

\(B=\frac{3^2.7^2.2.7.5^3}{5^3.7^3.2.3}\)

\(B=\frac{3.1.1.1.1}{1.1.1.1}\)

\(B=3\)

23 tháng 2 2017

1/2+1/3+1/4+...+1/63>1/31+1/31+...+1/31(62 số hạng 1/31)

hay 1/2+1/3+1/4+...+1/63>62 x 1/31

nên 1/2+1/3+1/4+...+1/63>2(dpcm)

26 tháng 3 2017

\(\frac{3^{10}.11+3^{10}.5}{3^9.2^4}+\frac{2^{13}+2^5}{2^{10}+2^2}=11\)

7 tháng 5 2018

Bài 1 : 

Ta có :

\(A=\frac{10^{17}+1}{10^{18}+1}=\frac{\left(10^{17}+1\right).10}{\left(10^{18}+1\right).10}=\frac{10^{18}+10}{10^{19}+10}\)

Mà : \(\frac{10^{18}+10}{10^{19}+10}>\frac{10^{18}+1}{10^{19}+1}\)

Mà \(A=\frac{10^{18}+10}{10^{19}+10}\)nên \(A>B\)

Vậy \(A>B\)

Bài 2 :

Ta có :

\(S=\frac{2013}{2014}+\frac{2014}{2015}+\frac{2015}{2016}+\frac{2016}{2013}\)

\(\Rightarrow S=\frac{2014-1}{2014}+\frac{2015-1}{2015}+\frac{2016-1}{2016}+\frac{2013+3}{2013}\)

\(\Rightarrow S=1-\frac{1}{2014}+1-\frac{1}{2015}+1-\frac{1}{2016}+1+\frac{3}{2013}\)

\(\Rightarrow S=4+\frac{3}{2013}-\left(\frac{1}{2014}+\frac{1}{2015}+\frac{1}{2016}\right)\)

Vì \(\frac{1}{2013}>\frac{1}{2014}>\frac{1}{2015}>\frac{1}{2016}\)nên  \(\frac{3}{2013}-\left(\frac{1}{2014}+\frac{1}{2015}+\frac{1}{2016}\right)>0\)

Nên : \(M>4\)

Vậy \(M>4\)

Bài 3 : 

Ta có :

\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+.......+\frac{1}{100^2}\)

Suy ra : \(A< \frac{1}{1.3}+\frac{1}{2.4}+\frac{1}{3.5}+....+\frac{1}{99.101}\)

\(\Rightarrow A< \frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{2.4}+......+\frac{2}{99.101}\right)\)

\(\Rightarrow A< \frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{2}-\frac{1}{4}+\frac{1}{3}-......-\frac{1}{101}\right)\)

\(\Rightarrow A< \frac{1}{2}.\left[\left(1+\frac{1}{2}+\frac{1}{3}+.....+\frac{1}{99}\right)-\left(\frac{1}{3}+\frac{1}{4}+......+\frac{1}{101}\right)\right]\)

\(\Rightarrow A< \frac{1}{2}.\left(1+\frac{1}{2}-\frac{1}{100}-\frac{1}{101}\right)\)

\(\Rightarrow A< \frac{1}{2}.\left(1+\frac{1}{2}\right)\)

\(\Rightarrow A< \frac{3}{4}\)

Vậy \(A< \frac{3}{4}\)

Bài 4 :

\(a)A=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+....+\frac{1}{2015.2017}\)

\(\Rightarrow A=\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+.....+\frac{1}{2015.2017}\right)\)

\(\Rightarrow A=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+.....+\frac{1}{2015}-\frac{1}{2017}\right)\)

\(\Rightarrow A=\frac{1}{2}.\left(1-\frac{1}{2017}\right)\)

\(\Rightarrow A=\frac{1}{2}.\frac{2016}{2017}\)

\(\Rightarrow A=\frac{1008}{2017}\)

Vậy \(A=\frac{1008}{2017}\)

\(b)\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+......+\frac{1}{x\left(x+2\right)}=\frac{1008}{2017}\)

\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+......+\frac{2}{x.\left(x+2\right)}=\frac{2016}{2017}\)

\(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+.....+\frac{1}{x}-\frac{1}{x+2}=\frac{2016}{2017}\)

\(1-\frac{1}{x+2}=\frac{2016}{2017}\)

\(\Rightarrow\frac{1}{x+2}=1-\frac{2016}{2017}\)

\(\Rightarrow\frac{1}{x+2}=\frac{1}{2017}\)

\(\Rightarrow x+2=2017\)

\(\Rightarrow x=2017-2=2015\)

Vậy \(x=2015\)

27 tháng 3 2017

1.A= 1.2.3+2.3.4+...+29.30.31+x=15

\(4A=1.2.3.4+2.3.4.\left(5-1\right)+...+29.30.31.\left(32-28\right)+4x=60\)

\(\Rightarrow4A=1.2.3.4+2.3.4.5-1.2.3.4+...+29.30.31.32-28.29.30.31+4x=60\)

Từ đó suy ra nha bạn

2.\(\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{x\left(x+1\right)}=\frac{2007}{2009}\)

\(=\frac{2}{2\left(2+1\right)}+\frac{2}{3.\left(3+1\right)}+...+\frac{2}{x\left(x+1\right)}=\frac{2007}{2009}\)

\(=2.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2007}{2009}\)

\(=2.\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2007}{2009}\\ =1-\frac{2}{\left(x+1\right)}=\frac{2007}{2009}\)

\(\Rightarrow\frac{2}{x+1}=\frac{2}{2009}\Rightarrow x+1=2009\Rightarrow x=2008\)