Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi 120 số 1 hoặc -1 đó lần lượt là a1; a2; a3; ...; a120. Theo đề ta có:
a1.a2.a3 = -1; a2.a3.a4 = -1; a3.a4.a5 = -1; ...;
a118.a119.a120 = -1; a119.a120.a1 = -1; a120.a1.a2 = -1.
\(a_1=a_4=\dfrac{1}{a_2\cdot a_3}\); \(a_2=a_5=\dfrac{1}{a_3\cdot a_4}\); \(a_3=a_6=\dfrac{1}{a_4\cdot a_5}\); ...;
\(a_{118}=a_1=\dfrac{1}{a_{119}\cdot a_{120}}\); \(a_{119}=a_2=\dfrac{1}{a_{120}\cdot a_1}\); \(a_{120}=a_3=\dfrac{1}{a_1\cdot a_2}\).
Từ đây ta suy ra \(a_1=a_4=a_7=...=a_{118}\); \(a_2=a_5=a_8=...=a_{119}\); \(a_3=a_6=a_9=...=a_{120}\). (1)
Do đó \(a_1=\dfrac{1}{a_2\cdot a_3}\); \(a_2=\dfrac{1}{a_3\cdot a_1}\); \(a_3=\dfrac{1}{a_1\cdot a_2}\). Mà a1.a2.a3 = -1 và các số a1; a2; a3; ...; a120 chỉ có thể là 1 hoặc -1 nên chỉ có một nghiệm duy nhất \(a_1=a_2=a_3=-1\). (2)
Từ (1) và (2) suy ra có 120 số -1, nên tổng của 120 số đó là \(120\cdot\left(-1\right)=-120\).
1,2,3,4,7,6,5,8,9,10,13,16,15,14,17,12,11,18,19,20
1;2;3;4;7;6;5;8;9;10;13;16;15;14;17;12;11;18;19;20
TK NHA!!!!!!!!!!!!!