K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 6:

Tổng các hệ số của đa thức A(x) khi khai triển sẽ bằng với giá trị của A(x) khi x=1

=>Tổng các hệ số khi khai triển là:

\(A\left(1\right)=\left(3-4+1\right)^{2004}\cdot\left(3+1+1\right)^{2005}=0\)

 

4 tháng 9 2023

cảm on vui

21 tháng 8 2023

Bài 10:

Gọi \(n=2a-1\left(a\in N,a>1\right)\)

Có: \(A=1+3+5+7+...+\left(2a-1\right)\)

\(=\dfrac{1+\left(2a-1\right)}{2}.a=a^2\)

Vậy A là số chính phương

21 tháng 8 2023

thank you vui

Bài khó đến lớp 8 như mình còn ko bít làm thì ai làm hộ bạn đc

26 tháng 11 2021

ko có thời gian

5 tháng 9 2023

 

Bài toán 1

Ta có thể viết:

A(x) = (3 - 4x + x^2)^2004 * (3 + 4x + x^2)^2005 = (3^2004 - 2 * 3^2004 * 4x + 4^2004 * x^2 + 2 * 3^2004 * 4x^2 - 2 * 3 * 4^2004 * x^3 + 4^4009 * x^4) = 3^4008 - 2 * 3^2005 * 4x - 2 * 3^2004 * 4x^2 + 4^4009 * x^4

Tổng các hệ số của đa thức này là:

1 + (-2 * 2005) + (-2 * 2004) + 1 = -6014

Vậy đáp án là -6014.

Bài toán 2

Ta có thể viết:

a = 111...1 (2n chữ số 1) b = 111...1 (n + 1 chữ số 1) c = 666...6 (n chữ số 6)

Vậy:

a + b + c + 8 = 111...1 (2n) + 111...1 (n + 1) + 666...6 (n) + 8

Ta có thể chia cả hai vế cho 8 được:

(a + b + c + 8) / 8 = 111...1 (2n) / 8 + 111...1 (n + 1) / 8 + 666...6 (n) / 8 + 1

Ta có thể thấy rằng:

111...1 (2n) / 8 = (111...1 (n))^2 111...1 (n + 1) / 8 = (111...1 (n))^2 + 1 666...6 (n) / 8 = (111...1 (n))^2 - 1

Vậy:

(a + b + c + 8) / 8 = (111...1 (n))^2 + (111...1 (n))^2 + 1 + (111...1 (n))^2 - 1 + 1 = 3 * (111...1 (n))^2 + 1

Ta có thể thấy rằng:

(111...1 (n))^2 + 1 = (111...1 (n) + 1)(111...1 (n) - 1)

Vậy:

(a + b + c + 8) / 8 = 3 * (111...1 (n) + 1)(111...1 (n) - 1) + 1 = 3 * (222...2 (n + 1))

Từ đó, ta có:

a + b + c + 8 = 666...6 (2n + 2)

Vậy, a + b + c + 8 là số chính phương.

Bài toán 3

Ta có thể chứng minh bằng quy nạp.

Cơ sở

Khi n = 1, ta có:

ab + 4 = 4

4 là số chính phương.

Bước đệm

Giả sử rằng với mọi số tự nhiên a < n, tồn tại số tự nhiên b sao cho ab + 4 là số chính phương.

Bước kết luận

Xét số tự nhiên a = n.

Theo giả thuyết, tồn tại số tự nhiên b sao cho ab + 4 là số chính phương.

Vậy, (n + 1)b + 4 = (n + 1)(ab + 4) + 3 là số chính phương, vì ab +

Tổng các hệ số là:
A(1)=(3-4+1)^2004*(3+4+1)^2005=0

5 tháng 9 2023

tick giúp mình nha

Lời giải

Đặt k = 11...1(n chữ số 1).

Thì a = 11...1111(2n chữ số 1) = 11..100..0 + 11...11 = k(9k + 1) + k = 9k2 + 2k.

Tương tự, b = 10k + 1; c = 6k.

=> a + b + c + 8 = 9k2 + 2k + 10k + 1 + 6k + 8 = 9k2 + 18k + 9 = (3k + 3)2.

Vậy a + b + c + 8 là số chính phương.

Chứng minh lại

Ta có:

a + b + c + 8 = (9k2 + 2k) + (10k + 1) + (6k) + 8 = 9k2 + 18k + 9 = (3k + 3)2

Ta thấy rằng (3k + 3)2 là bình phương của số tự nhiên (3k + 3). Do đó, a + b + c + 8 là số chính phương.

Kết luận

Bằng cách đặt k = 11...1(n chữ số 1), ta có thể chứng minh được rằng a + b + c + 8 là số chính phương.

5 tháng 9 2023

??

-(

bn lấy nó đâu ra dz  

21 tháng 4 2022

ok

21 tháng 4 2022

`a=11...11`(2n số 1)

`b=11...11`(n+1 số 1)

`c=66...66`(n số 6)

`->a+b+c+8=11...11+11...11+66...66+8`

\(=\dfrac{10^{2n}-1}{9}+\dfrac{10^{n+1}-1}{9}+\dfrac{6\left(10^n-1\right)}{9}+\dfrac{72}{9}\\ =\dfrac{10^n-1+10^{n+1}-1+6\left(10^n-1\right)+72}{9}\\ =\dfrac{\left(10^n\right)^2+10\cdot10^n+6\cdot10^n-6+70}{9}\\ =\dfrac{\left(10^n\right)^2+16\cdot10^n+64}{9}\\ =\left(\dfrac{10^n+8}{3}\right)^2\)

`->a+b+c+8` là số chính phương 

`->đpcm`

4 tháng 9 2023

chắc khó qué nên ko ai lm cho tớ hic😥

4 tháng 9 2023

Bạn ơi, mình nghĩ là bạn nên chia các bài ra từng CH khác nhau, như vậy các TV sẽ dễ giúp đỡ bạn hơn và chất lượng ctrl có thể tốt hơn bạn nhé.